On Architecture
Vitruvius Pollio
Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator
1. BEAMS of very generous length are selected, and upon them are nailed socket-pieces in which windlasses are inserted. Midway along their length the beams are incised and cut away to form framings, and in these cuttings the capitals of the catapults are inserted, and prevented by wedges from moving when the stretching is going on. Then the bronze boxes are inserted into the capitals, and the little iron bolts, which the Greeks call e)pizugi/des are put in their places in the boxes.
2. Next, the loops of the strings are put through the holes in the capitals, and passed through to the other side; next, they are put upon the windlasses, and wound round them in order that
1. IT is related that the battering ram for sieges was originally invented as follows. The Carthaginians pitched their camp for the siege of Cadiz. They captured an outwork and attempted to destroy it. But having no iron implements for its destruction, they took a beam, and, raising it with their hands, and driving the end of it repeatedly against the top of the wall, they threw down the top courses of stones, and thus, step by step in regular order, they demolished the entire redoubt.
2. Afterwards a carpenter from Tyre, Bright by name and by nature, was led by this invention into setting up a mast from which he hung another crosswise like a steelyard, and so, by swinging it vigorously to and fro, he threw down the wall of Cadiz. Geras of Chalcedon was the first to make a wooden platform with wheels under it, upon which he constructed a framework of uprights and crosspieces, and within it he hung the ram, and covered it with oxhide for the better protection of the men who were stationed in the machine to batter the wall. As the machine made but slow progress, he first gave it the name of the tortoise of the ram.
3. These were the first steps then taken towards that kind of machinery, but afterwards, when Philip, the son of Amyntas, was besieging Byzantium, it was developed in many varieties and made handier by Polyidus the Thessalian. His pupils were Diades and Charias, who served with Alexander. Diades shows in his writings that he invented moveable towers, which he used also to take apart and carry round with the army, and likewise the borer, and the scaling machine, by means of which one can cross over to the wall on a level with the top of it, as well as the destroyer called the raven, or by others the crane.
4. He also employed the ram mounted on wheels, an account of which he left in his writings. As for the tower, he says that the smallest should be not less than sixty cubits in height and seventeen in breadth, but diminishing to one fifth less at the top; the uprights for the tower being nine inches at the bottom and half a foot at the top. Such a tower, he says, ought to be ten stories high, with windows in it on all sides.
5. His larger tower, he adds, was one hundred and twenty cubits high and twenty-three and one half cubits broad, diminishing like the other to one fifth less; the uprights, one foot at the bottom and six digits at the top. He made this large tower twenty stories high, each story having a gallery round it, three cubits wide. He covered the towers with rawhide to protect them from any kind of missile.
6. The tortoise of the battering ram was constructed in the same way. It had, however, a base of thirty cubits square, and a height, excluding the pediment, of thirteen cubits; the height of the pediment from its bed to its top was seven cubits. Issuing up and above the middle of the roof for not less than two cubits was a gable, and on this was reared a small tower four stories high, in which, on the top floor, scorpiones and catapults were set up, and on the lower floors a great quantity of water was stored, to put out any fire that might be thrown on the tortoise. Inside of this was set the machinery of the ram, termed in Greek kpiodo/xh, in which was placed a roller, turned on a lathe, and the ram, being
7. He explained the principles of the borer as follows: that the machine itself resembled the tortoise, but that in the middle it had a pipe lying between upright walls, like the pipe usually found in catapults and ballistae, fifty cubits in length and one cubit in height, in which a windlass was set transversely. On the right and left, at the end of the pipe, were two blocks, by means of which the iron-pointed beam, which lay in the pipe, was moved. There were numerous rollers enclosed in the pipe itself under the beam, which made its movements quicker and stronger. Numerous arches were erected along the pipe above the beam which was in it, to hold up the rawhide in which this machine was enveloped.
8. He thought it needless to write about the raven, because he saw that the machine was of no value. With regard to the scaling machine, termed in Greek e)piba/qra and the naval contrivances which, as he wrote, could be used in boarding ships, I have observed that he merely promised with some earnestness to explain their principles, but that he has not done so.
I have set forth what was written by Diades on machines and their construction. I shall now set forth the methods which I have learned from my teachers, and which I myself believe to be useful.
1. A TORTOISE intended for the filling of ditches, and thereby to make it possible to reach the wall, is to be made as follows. Let a base, termed in Greek e)sxa/ra, be constructed, with each of its sides twenty-one feet long, and with four crosspieces. Let these be held together by two others, two thirds of a foot thick and half a foot broad; let the crosspieces be about three feet and
2. Let two beams be laid on the base, projecting for six feet on each side, round the projections of which let two other beams be nailed, projecting seven feet beyond the former, and of the thickness and breadth prescribed in the case of the base. On this framework set up posts mortised into it, nine feet high exclusive of their tenons, one foot and a quarter square, and one foot and a half apart. Let the posts be tied together at the top by mortised beams. Over the beams let the rafters be set, tied one into another by means of tenons, and carried up twelve feet high. Over the rafters set the square beam by which the rafters are bound together.
3. Let the rafters themselves be held together by bridgings, and covered with boards, preferably of holm oak, or, this failing, of any other material which has the greatest strength, except pine or alder. For these woods are weak and easily catch fire. Over the boardings let there be placed wattles very closely woven of thin twigs as fresh as possible. Let the entire machine be covered with rawhide sewed together double and stuffed with seaweed or straw soaked in vinegar. In this way the blows of ballistae and the force of fires will be repelled by them.
1. THERE is also another kind of tortoise, which has all the other details as described above except the rafters, but it has round it of boards, and eaves sloping down
2. It does not seem to me out of place to set forth the principles on which Hegetor of Byzantium constructed a tortoise. The length of its base was sixty-three feet, the breadth forty-two. The corner posts, four in number, which were set upon this framework, were made of two timbers each, and were thirty-six feet high, a foot and a quarter thick, and a foot and a half broad. The base had eight wheels by means of which it was moved about. The height of these wheels was six and three quarters feet, their thickness three feet. Thus constructed of three pieces of wood, united by alternate opposite dovetails and bound together by cold-drawn iron plates, they revolved in the trees or amaxopodes.
3. Likewise, on the plane of the crossbeams above the base, were erected posts eighteen feet high, three quarters of a foot broad, two thirds of a foot thick, and a foot and three quarters apart; above these, framed beams, a foot broad and three quarters of a foot thick, held the whole structure together; above this the rafters were raised, with an elevation of twelve feet; a beam set above the rafters united their joinings. They also had bridgings fastened transversely, and a flooring laid on them protected the parts beneath.
4. It had, moreover, a middle flooring on girts, where scorpiones and catapults were placed. There were set up, also, two framed
5. Over the head of these (ropes) which held the ram, was placed a parapet fitted out like a small tower, so that, without danger, two soldiers, standing in safety, could look out and report what the enemy were attempting. The entire ram had a length of one hundred and eighty feet, a breadth at the base of a foot and a quarter, and a thickness of a foot, tapering at the head to a breadth of a foot and a thickness of three quarters of a foot.
6. This ram, moreover, had a beak of hard iron such as ships of war usually have, and from the beak iron plates, four in number, about fifteen feet long, were fastened to the wood. From the head to the very heel of the beam were stretched cables, three in number and eight digits thick, fastened just as in a ship from stem to stern continuously, and these cables were bound with cross girdles a foot and a quarter apart. Over these the whole ram was wrapped with rawhide. The ends of the ropes from which the ram hung were made of fourfold chains of iron, and these chains were themselves wrapped in rawhide.
7. Likewise, the projecting end of the ram had a box framed and constructed of boards, in which was stretched a net made of rather large ropes, over the rough surfaces of which one easily reached the wall without the feet slipping. And this machine moved in six directions, forward (and backward), also to the right or left, and likewise it was elevated by extending it upwards and depressed by inclining it downwards. The machine could be elevated to a height sufficient to throw down a wall of about one hundred feet, and likewise in its thrust it covered a space from right to left of not less than one hundred feet. One