On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

5. Therefore, since this is inexplicable by arithmetic, let a diagonal line be drawn from angle to angle of that square of ten feet in length and width, dividing it into two triangles of equal size, each fifty feet in area. Taking this diagonal line as the length, describe another square. Thus we shall have in the larger square four triangles of the same size and the same number of feet as the two of fifty feet each which were formed by the diagonal line in the smaller square. In this way Plato demonstrated the doubling by means of lines, as the figure appended at the bottom of the page will show.

6. Then again, Pythagoras showed that a right angle can be formed without the contrivances of the artisan. Thus, the result which carpenters reach very laboriously, but scarcely to exactness, with their squares, can be demonstrated to perfection

253
from the reasoning and methods of his teaching. If we take three rules, one three feet, the second four feet, and the third five feet in length, and join these rules together with their tips touching each other so as to make a triangular figure, they will form a right angle. Now if a square be described on the length of each one of these rules, the square on the side of three feet in length will have an area of nine feet; of four feet, sixteen; of five, twenty-five.