On Architecture
Vitruvius Pollio
Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator
12. When they had thus transported all the shafts, and it became necessary to transport the architraves, Chersiphron's son Metagenes extended the same principle from the transportation of the shafts to the bringing down of the architraves. He made wheels, each about twelve feet in diameter, and enclosed the ends of the architraves in the wheels. In the ends he fixed pivots and rings in the same way. So when the four-inch frames were drawn by oxen, the wheels turned on the pivots enclosed in the rings, and the architraves, which were enclosed like axles in
13. In our own times, however, when the pedestal of the colossal Apollo in his temple had cracked with age, they were afraid that the statue would fall and be broken, and so they contracted for the cutting of a pedestal from the same quarries. The contract was taken by one Paconius. This pedestal was twelve feet long, eight feet wide, and six feet high. Paconius, with confident pride, did not transport it by the method of Metagenes, but determined to make a machine of a different sort, though on the same principle.
14. He made wheels of about fifteen feet in diameter, and in these wheels he enclosed the ends of the stone; then he fastened two-inch crossbars from wheel to wheel round the stone, encompassing it, so that there was an interval of not more than one foot between bar and bar. Then he coiled a rope round the bars, yoked up his oxen, and began to draw on the rope. Consequently as it uncoiled, it did indeed cause the wheels to turn, but it could not draw them in a line straight along the road, but kept swerving out to one side. Hence it was necessary to draw the machine back again. Thus, by this drawing to and fro, Paconius got into such financial embarrassment that he became insolvent.
15. I will digress a bit and explain how these stone-quarries were discovered. Pixodorus was a shepherd who lived in that vicinity. When the people of Ephesus were planning to build the temple of Diana in marble, and debating whether to get the marble from Paros, Proconnesus, Heraclea, or Thasos, Pixodorus drove out his sheep and was feeding his flock in that very spot. Then two rams ran at each other, and, each passing the other, one of them, after his charge, struck his horns against a
1. I HAVE briefly set forth what I thought necessary about the principles of hoisting machines. In them two different things, unlike each other, work together, as elements of their motion and power, to produce these effects. One of them is the right line, which the Greeks call eu)qei=a the other is the circle, which call kuklwth/ but in point of fact, neither rectilinear without circular motion, nor revolutions, without rectilinear motion, can accomplish the raising of loads. I will explain this, so that it may be understood.
2. As centres, axles are inserted into the sheaves, and these are fastened in the blocks; a rope carried over the sheaves, drawn straight down, and fastened to a windlass, causes the load to move upward from its place as the handspikes are turned. The pivots of this windlass, lying as centres in right lines in its socket-pieces, and the handspikes inserted in its holes, make the load rise when the ends of the windlass revolve in a circle like a lathe. Just so, when an iron lever is applied to a weight which a great many hands cannot move, with the fulcrum, which the Greek call u(pomo/xlion, lying as a centre in a right line under the lever, and with the tongue of the lever placed under the weight, one man's strength, bearing down upon the head of it, heaves up the weight.
3. For, as the shorter fore part of the lever goes under the weight from the fulcrum that forms the centre, the head of it, which is farther away from that centre, on being depressed, is made to describe a circular movement, and thus by pressure brings to an equilibrium the weight of a very great load by means of a few hands. Again, if the tongue of an iron lever is placed under a weight, and its head is not pushed down, but, on the contrary, is heaved up, the tongue, supported on the surface of the ground, will treat that as the weight, and the edge of the weight itself as the fulcrum. Thus, not so easily as by pushing down, but by motion in the opposite direction, the weight of the load will nevertheless be raised. If, therefore, the tongue of a lever lying on a fulcrum goes too far under the weight, and its head exerts its pressure too near the centre, it will not be able to elevate the weight, nor can it do so unless, as described above, the length of the lever is brought to equilibrium by the depression of its head.
4. This may be seen from the balances that we call steelyards. When the handle is set as a centre close to the end from which the scale hangs, and the counterpoise is moved along towards the other arm of the beam, shifting from point to point as it goes farther or even reaches the extremity, a small and inferior weight becomes equal to a very heavy object that is being weighed, on account of the equilibrium that is due to the levelling of the beam. Thus, as it withdraws from the centre, a small and comparatively light counterpoise, slowly turning the scale, makes a greater amount of weight rise gently upwards from below.
5. So, too, the pilot of the biggest merchantman, grasping the steering oar by its handle, which the Greeks call o)/iac, and with one hand bringing it to the turning point, according to the rules of his art, by pressure about a centre, can turn the ship, although she may be laden with a very large or even enormous burden of merchandise and provisions. And when her sails are set only halfway up the mast, a ship cannot run quickly; but when the yard is hoisted to the top, she makes much quicker progress, because then the sails get the wind, not when they are