Elementa

Euclid

Euclid. Euclidis Opera omnia, Volume 1-5. Heiberg, Johan Ludvig, editor. Leipzig: Teubner, 1883-88.

ἐὰν ὦσιν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, ὁ δὲ πρῶτος τὸν ἔσχατον μετρῇ, καὶ τὸν δεύτερον μετρήσει.

ἔστωσαν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον οἱ Α, Β, Γ, Δ, ὁ δὲ Α τὸν Δ μετρείτω· λέγω, ὅτι καὶ ὁ Α τὸν Β μετρεῖ.

εἰ γὰρ οὐ μετρεῖ ὁ Α τὸν Β, οὐδὲ ἄλλος οὐδεὶς οὐδένα μετρήσει· μετρεῖ δὲ ὁ Α τὸν Δ. μετρεῖ ἄρα καὶ ὁ Α τὸν Β· ὅπερ ἔδει δεῖξαι.

ἐὰν δύο ἀριθμῶν μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτωσιν ἀριθμοί, ὅσοι εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ εἰς τοὺς τὸν αὐτὸν λόγον ἔχοντας αὐτοῖς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.

δύο γὰρ ἀριθμῶν τῶν Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπιπτέτωσαν ἀριθμοὶ οἱ Γ, Δ, καὶ πεποιήσθω ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Ε πρὸς τὸν Ζ· λέγω, ὅτι ὅσοι εἰς τοὺς Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεπτώκασιν ἀριθμοί, τοσοῦτοι καὶ εἰς τοὺς Ε, Ζ μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.

ὅσοι γάρ εἰσι τῷ πλήθει οἱ Α, Β, Γ, Δ, τοσοῦτοι εἰλήφθωσαν ἐλάχιστοι ἀριθμοὶ τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Γ, Δ, Β οἱ Η, Θ, Κ, Λ· οἱ ἄρα ἄκροι αὐτῶν οἱ Η, Λ πρῶτοι πρὸς ἀλλήλους εἰσίν. καὶ ἐπεὶ οἱ Α, Γ, Δ, Β τοῖς Η, Θ, Κ, Λ ἐν τῷ αὐτῷ λόγῳ εἰσίν, καί ἐστιν ἴσον τὸ πλῆθος τῶν Α, Γ, Δ, Β τῷ πλήθει τῶν Η, Θ, Κ, Λ, διʼ ἴσου ἄρα ἐστὶν ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Η πρὸς τὸν Λ. ὡς δὲ ὁ Α πρὸς τὸν Β, οὕτως ὁ Ε πρὸς τὸν Ζ· καὶ ὡς ἄρα ὁ Η πρὸς τὸν Λ, οὕτως ὁ Ε πρὸς τὸν Ζ. οἱ δὲ Η, Λ πρῶτοι, οἱ δὲ πρῶτοι καὶ ἐλάχιστοι, οἱ δὲ ἐλάχιστοι ἀριθμοὶ μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων τὸν μείζονα καὶ ὁ ἐλάσσων τὸν ἐλάσσονα, τουτέστιν ὅ τε ἡγούμενος τὸν ἡγούμενον καὶ ὁ ἑπόμενος τὸν ἑπόμενον. ἰσάκις ἄρα ὁ Η τὸν Ε μετρεῖ καὶ ὁ Λ τὸν Ζ. ὁσάκις δὴ ὁ Η τὸν Ε μετρεῖ, τοσαυτάκις καὶ ἑκάτερος τῶν Θ, Κ ἑκάτερον τῶν Μ, Ν μετρείτω· οἱ Η, Θ, Κ, Λ ἄρα τοὺς Ε, Μ, Ν, Ζ ἰσάκις μετροῦσιν. οἱ Η, Θ, Κ, Λ ἄρα τοῖς Ε, Μ, Ν, Ζ ἐν τῷ αὐτῷ λόγῳ εἰσίν. ἀλλὰ οἱ Η, Θ, Κ, Λ τοῖς Α, Γ, Δ, Β ἐν τῷ αὐτῷ λόγῳ εἰσίν· καὶ οἱ Α, Γ, Δ, Β ἄρα τοῖς Ε, Μ, Ν, Ζ ἐν τῷ αὐτῷ λόγῳ εἰσίν. οἱ δὲ Α, Γ, Δ, Β ἑξῆς ἀνάλογόν εἰσιν· καὶ οἱ Ε, Μ, Ν, Ζ ἄρα ἑξῆς ἀνάλογόν εἰσιν. ὅσοι ἄρα εἰς τοὺς Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεπτώκασιν ἀριθμοί, τοσοῦτοι καὶ εἰς τοὺς Ε, Ζ μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεπτώκασιν ἀριθμοί· ὅπερ ἔδει δεῖξαι.

ἐὰν δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους ὦσιν, καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτωσιν ἀριθμοί, ὅσοι εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.

ἔστωσαν δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους οἱ Α, Β καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπιπτέτωσαν οἱ Γ, Δ, καὶ ἐκκείσθω ἡ Ε μονάς· λέγω, ὅτι ὅσοι εἰς τοὺς Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεπτώκασιν ἀριθμοί, τοσοῦτοι καὶ ἑκατέρου τῶν Α, Β καὶ τῆς μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.

εἰλήφθωσαν γὰρ δύο μὲν ἀριθμοὶ ἐλάχιστοι ἐν τῷ τῶν Α, Γ, Δ, Β λόγῳ ὄντες οἱ Ζ, Η, τρεῖς δὲ οἱ Θ, Κ, Λ, καὶ ἀεὶ ἑξῆς ἑνὶ πλείους, ἕως ἂν ἴσον γένηται τὸ πλῆθος αὐτῶν τῷ πλήθει τῶν Α, Γ, Δ, Β. εἰλήφθωσαν, καὶ ἔστωσαν οἱ Μ, Ν, Ξ, Ο. φανερὸν δή, ὅτι ὁ μὲν Ζ ἑαυτὸν πολλαπλασιάσας τὸν Θ πεποίηκεν, τὸν δὲ Θ πολλαπλασιάσας τὸν Μ πεποίηκεν, καὶ ὁ Η ἑαυτὸν μὲν πολλαπλασιάσας τὸν Λ πεποίηκεν, τὸν δὲ Λ πολλαπλασιάσας τὸν Ο πεποίηκεν. καὶ ἐπεὶ οἱ Μ, Ν, Ξ, Ο ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Ζ, Η, εἰσὶ δὲ καὶ οἱ Α, Γ, Δ, Β ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Ζ, Η, καί ἐστιν ἴσον τὸ πλῆθος τῶν Μ, Ν, Ξ, Ο τῷ πλήθει τῶν Α, Γ, Δ, Β, ἕκαστος ἄρα τῶν Μ, Ν, Ξ, Ο ἑκάστῳ τῶν Α, Γ, Δ, Β ἴσος ἐστίν· ἴσος ἄρα ἐστὶν ὁ μὲν Μ τῷ Α, ὁ δὲ Ο τῷ Β. καὶ ἐπεὶ ὁ Ζ ἑαυτὸν πολλαπλασιάσας τὸν Θ πεποίηκεν, ὁ Ζ ἄρα τὸν Θ μετρεῖ κατὰ τὰς ἐν τῷ Ζ μονάδας. μετρεῖ δὲ καὶ ἡ Ε μονὰς τὸν Ζ κατὰ τὰς ἐν αὐτῷ μονάδας· ἰσάκις ἄρα ἡ Ε μονὰς τὸν Ζ ἀριθμὸν μετρεῖ καὶ ὁ Ζ τὸν Θ. ἔστιν ἄρα ὡς ἡ Ε μονὰς πρὸς τὸν Ζ ἀριθμόν, οὕτως ὁ Ζ πρὸς τὸν Θ. πάλιν, ἐπεὶ ὁ Ζ τὸν Θ πολλαπλασιάσας τὸν Μ πεποίηκεν, ὁ Θ ἄρα τὸν Μ μετρεῖ κατὰ τὰς ἐν τῷ Ζ μονάδας. μετρεῖ δὲ καὶ ἡ Ε μονὰς τὸν Ζ ἀριθμὸν κατὰ τὰς ἐν αὐτῷ μονάδας· ἰσάκις ἄρα ἡ Ε μονὰς τὸν Ζ ἀριθμὸν μετρεῖ καὶ ὁ Θ τὸν Μ. ἔστιν ἄρα ὡς ἡ Ε μονὰς πρὸς τὸν Ζ ἀριθμόν, οὕτως ὁ Θ πρὸς τὸν Μ. ἐδείχθη δὲ καὶ ὡς ἡ Ε μονὰς πρὸς τὸν Ζ ἀριθμόν, οὕτως ὁ Ζ πρὸς τὸν Θ· καὶ ὡς ἄρα ἡ Ε μονὰς πρὸς τὸν Ζ ἀριθμόν, οὕτως ὁ Ζ πρὸς τὸν Θ καὶ ὁ Θ πρὸς τὸν Μ. ἴσος δὲ ὁ Μ τῷ Α· ἔστιν ἄρα ὡς ἡ Ε μονὰς πρὸς τὸν Ζ ἀριθμόν, οὕτως ὁ Ζ πρὸς τὸν Θ καὶ ὁ Θ πρὸς τὸν Α. διὰ τὰ αὐτὰ δὴ καὶ ὡς ἡ Ε μονὰς πρὸς τὸν Η ἀριθμόν, οὕτως ὁ Η πρὸς τὸν Λ καὶ ὁ Λ πρὸς τὸν Β. ὅσοι ἄρα εἰς τοὺς Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεπτώκασιν ἀριθμοί, τοσοῦτοι καὶ ἑκατέρου τῶν Α, Β καὶ μονάδος τῆς Ε μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεπτώκασιν ἀριθμοί· ὅπερ ἔδει δεῖξαι.

ἐὰν δύο ἀριθμῶν ἑκατέρου καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτωσιν ἀριθμοί, ὅσοι ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.

δύο γὰρ ἀριθμῶν τῶν Α, Β καὶ μονάδος τῆς Γ μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπιπτέτωσαν ἀριθμοὶ οἵ τε Δ, Ε καὶ οἱ Ζ, η· λέγω, ὅτι ὅσοι ἑκατέρου τῶν Α, Β καὶ μονάδος τῆς Γ μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεπτώκασιν ἀριθμοί, τοσοῦτοι καὶ εἰς τοὺς Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.

ὁ Δ γὰρ τὸν Ζ πολλαπλασιάσας τὸν Θ ποιείτω, ἑκάτερος δὲ τῶν Δ, Ζ τὸν Θ πολλαπλασιάσας ἑκάτερον τῶν Κ, Λ ποιείτω.

καὶ ἐπεί ἐστιν ὡς ἡ Γ μονὰς πρὸς τὸν Δ ἀριθμόν, οὕτως ὁ Δ πρὸς τὸν Ε, ἰσάκις ἄρα ἡ Γ μονὰς τὸν Δ ἀριθμὸν μετρεῖ καὶ ὁ Δ τὸν Ε. ἡ δὲ Γ μονὰς τὸν Δ ἀριθμὸν μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας· καὶ ὁ Δ ἄρα ἀριθμὸς τὸν Ε μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας· ὁ Δ ἄρα ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν. πάλιν, ἐπεί ἐστιν ὡς ἡ Γ μονὰς πρὸς τὸν Δ ἀριθμὸν, οὕτως ὁ Ε πρὸς τὸν Α, ἰσάκις ἄρα ἡ Γ μονὰς τὸν Δ ἀριθμὸν μετρεῖ καὶ ὁ Ε τὸν Α. ἡ δὲ Γ μονὰς τὸν Δ ἀριθμὸν μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας· καὶ ὁ Ε ἄρα τὸν Α μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας· ὁ Δ ἄρα τὸν Ε πολλαπλασιάσας τὸν Α πεποίηκεν. διὰ τὰ αὐτὰ δὴ καὶ ὁ μὲν Ζ ἑαυτὸν πολλαπλασιάσας τὸν Η πεποίηκεν, τὸν δὲ Η πολλαπλασιάσας τὸν Β πεποίηκεν. καὶ ἐπεὶ ὁ Δ ἑαυτὸν μὲν πολλαπλασιάσας τὸν Ε πεποίηκεν, τὸν δὲ Ζ πολλαπλασιάσας τὸν Θ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Ε πρὸς τὸν Θ. διὰ τὰ αὐτὰ δὴ καὶ ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Θ πρὸς τὸν Η. καὶ ὡς ἄρα ὁ Ε πρὸς τὸν Θ, οὕτως ὁ Θ πρὸς τὸν Η. πάλιν, ἐπεὶ ὁ Δ ἑκάτερον τῶν Ε, Θ πολλαπλασιάσας ἑκάτερον τῶν Α, Κ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Ε πρὸς τὸν Θ, οὕτως ὁ Α πρὸς τὸν Κ. ἀλλʼ ὡς ὁ Ε πρὸς τὸν Θ, οὕτως ὁ Δ πρὸς τὸν Ζ· καὶ ὡς ἄρα ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Α πρὸς τὸν Κ. πάλιν, ἐπεὶ ἑκάτερος τῶν Δ, Ζ τὸν Θ πολλαπλασιάσας ἑκάτερον τῶν Κ, Λ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Κ πρὸς τὸν Λ. ἀλλʼ ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Α πρὸς τὸν Κ· καὶ ὡς ἄρα ὁ Α πρὸς τὸν Κ, οὕτως ὁ Κ πρὸς τὸν Λ. ἔτι ἐπεὶ ὁ Ζ ἑκάτερον τῶν Θ, Η πολλαπλασιάσας ἑκάτερον τῶν Λ, Β πεποίηκεν, ἔστιν ἄρα ὡς ὁ Θ πρὸς τὸν Η, οὕτως ὁ Λ πρὸς τὸν Β. ὡς δὲ ὁ Θ πρὸς τὸν Η, οὕτως ὁ Δ πρὸς τὸν Ζ· καὶ ὡς ἄρα ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Λ πρὸς τὸν Β. ἐδείχθη δὲ καὶ ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὅ τε Α πρὸς τὸν Κ καὶ ὁ Κ πρὸς τὸν Λ· καὶ ὡς ἄρα ὁ Α πρὸς τὸν Κ, οὕτως ὁ Κ πρὸς τὸν Λ καὶ ὁ Λ πρὸς τὸν Β. οἱ Α, Κ, Λ, Β ἄρα κατὰ τὸ συνεχὲς ἑξῆς εἰσιν ἀνάλογον. ὅσοι ἄρα ἑκατέρου τῶν Α, Β καὶ τῆς Γ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ εἰς τοὺς Α, Β μεταξὺ κατὰ τὸ συνεχὲς ἐμπεσοῦνται· ὅπερ ἔδει δεῖξαι.

δύο τετραγώνων ἀριθμῶν εἷς μέσος ἀνάλογόν ἐστιν ἀριθμός, καὶ ὁ τετράγωνος πρὸς τὸν τετράγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ πλευρὰ πρὸς τὴν πλευράν.

ἔστωσαν τετράγωνοι ἀριθμοὶ οἱ Α, Β, καὶ τοῦ μὲν Α πλευρὰ ἔστω ὁ Γ, τοῦ δὲ Β ὁ Δ· λέγω, ὅτι τῶν Α, Β εἷς μέσος ἀνάλογόν ἐστιν ἀριθμός, καὶ ὁ Α πρὸς τὸν Β διπλασίονα λόγον ἔχει ἤπερ ὁ Γ πρὸς τὸν Δ.

ὁ Γ γὰρ τὸν Δ πολλαπλασιάσας τὸν Ε ποιείτω. καὶ ἐπεὶ τετράγωνός ἐστιν ὁ Α, πλευρὰ δὲ αὐτοῦ ἐστιν ὁ Γ, ὁ Γ ἄρα ἑαυτὸν πολλαπλασιάσας τὸν Α πεποίηκεν. διὰ τὰ αὐτὰ δὴ καὶ ὁ Δ ἑαυτὸν πολλαπλασιάσας τὸν Β πεποίηκεν. ἐπεὶ οὖν ὁ Γ ἑκάτερον τῶν Γ, Δ πολλαπλασιάσας ἑκάτερον τῶν Α, Ε πεποίηκεν, ἔστιν ἄρα ὡς ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Α πρὸς τὸν Ε. διὰ τὰ αὐτὰ δὴ καὶ ὡς ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Ε πρὸς τὸν Β. καὶ ὡς ἄρα ὁ Α πρὸς τὸν Ε, οὕτως ὁ Ε πρὸς τὸν Β. τῶν Α, Β ἄρα εἷς μέσος ἀνάλογόν ἐστιν ἀριθμός.

λέγω δή, ὅτι καὶ ὁ Α πρὸς τὸν Β διπλασίονα λόγον ἔχει ἤπερ ὁ Γ πρὸς τὸν Δ. ἐπεὶ γὰρ τρεῖς ἀριθμοὶ ἀνάλογόν εἰσιν οἱ Α, Ε, Β, ὁ Α ἄρα πρὸς τὸν Β διπλασίονα λόγον ἔχει ἤπερ ὁ Α πρὸς τὸν Ε. ὡς δὲ ὁ Α πρὸς τὸν Ε, οὕτως ὁ Γ πρὸς τὸν Δ. ὁ Α ἄρα πρὸς τὸν Β διπλασίονα λόγον ἔχει ἤπερ ἡ Γ πλευρὰ πρὸς τὴν Δ· ὅπερ ἔδει δεῖξαι.

δύο κύβων ἀριθμῶν δύο μέσοι ἀνάλογόν εἰσιν ἀριθμοί, καὶ ὁ κύβος πρὸς τὸν κύβον τριπλασίονα λόγον ἔχει ἤπερ ἡ πλευρὰ πρὸς τὴν πλευράν.

ἔστωσαν κύβοι ἀριθμοὶ οἱ Α, Β καὶ τοῦ μὲν Α πλευρὰ ἔστω ὁ Γ, τοῦ δὲ Β ὁ Δ· λέγω, ὅτι τῶν Α, Β δύο μέσοι ἀνάλογόν εἰσιν ἀριθμοί, καὶ ὁ Α πρὸς τὸν Β τριπλασίονα λόγον ἔχει ἤπερ ὁ Γ πρὸς τὸν Δ.

ὁ γὰρ Γ ἑαυτὸν μὲν πολλαπλασιάσας τὸν Ε ποιείτω, τὸν δὲ Δ πολλαπλασιάσας τὸν Ζ ποιείτω, ὁ δὲ Δ ἑαυτὸν πολλαπλασιάσας τὸν Η ποιείτω, ἑκάτερος δὲ τῶν Γ, Δ τὸν Ζ πολλαπλασιάσας ἑκάτερον τῶν Θ, Κ ποιείτω.

καὶ ἐπεὶ κύβος ἐστὶν ὁ Α, πλευρὰ δὲ αὐτοῦ ὁ Γ, καὶ ὁ Γ ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν, ὁ Γ ἄρα ἑαυτὸν μὲν πολλαπλασιάσας τὸν Ε πεποίηκεν, τὸν δὲ Ε πολλαπλασιάσας τὸν Α πεποίηκεν. διὰ τὰ αὐτὰ δὴ καὶ ὁ Δ ἑαυτὸν μὲν πολλαπλασιάσας τὸν Η πεποίηκεν, τὸν δὲ Η πολλαπλασιάσας τὸν Β πεποίηκεν. καὶ ἐπεὶ ὁ Γ ἑκάτερον τῶν Γ, Δ πολλαπλασιάσας ἑκάτερον τῶν Ε, Ζ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Ε πρὸς τὸν Ζ. διὰ τὰ αὐτὰ δὴ καὶ ὡς ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Ζ πρὸς τὸν Η. πάλιν, ἐπεὶ ὁ Γ ἑκάτερον τῶν Ε, Ζ πολλαπλασιάσας ἑκάτερον τῶν Α, Θ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Ε πρὸς τὸν Ζ, οὕτως ὁ Α πρὸς τὸν Θ. ὡς δὲ ὁ Ε πρὸς τὸν Ζ, οὕτως ὁ Γ πρὸς τὸν Δ· καὶ ὡς ἄρα ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Α πρὸς τὸν Θ. πάλιν, ἐπεὶ ἑκάτερος τῶν Γ, Δ τὸν Ζ πολλαπλασιάσας ἑκάτερον τῶν Θ, Κ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Θ πρὸς τὸν Κ. πάλιν, ἐπεὶ ὁ Δ ἑκάτερον τῶν Ζ, Η πολλαπλασιάσας ἑκάτερον τῶν Κ, Β πεποίηκεν, ἔστιν ἄρα ὡς ὁ Ζ πρὸς τὸν Η, οὕτως ὁ Κ πρὸς τὸν Β. ὡς δὲ ὁ Ζ πρὸς τὸν Η, οὕτως ὁ Γ πρὸς τὸν Δ· καὶ ὡς ἄρα ὁ Γ πρὸς τὸν Δ, οὕτως ὅ τε Α πρὸς τὸν Θ καὶ ὁ Θ πρὸς τὸν Κ καὶ ὁ Κ πρὸς τὸν Β. τῶν Α, Β ἄρα δύο μέσοι ἀνάλογόν εἰσιν οἱ Θ, Κ.

λέγω δή, ὅτι καὶ ὁ Α πρὸς τὸν Β τριπλασίονα λόγον ἔχει ἤπερ ὁ Γ πρὸς τὸν Δ. ἐπεὶ γὰρ τέσσαρες ἀριθμοὶ ἀνάλογόν εἰσιν οἱ Α, Θ, Κ, Β, ὁ Α ἄρα πρὸς τὸν Β τριπλασίονα λόγον ἔχει ἤπερ ὁ Α πρὸς τὸν Θ. ὡς δὲ ὁ Α πρὸς τὸν Θ, οὕτως ὁ Γ πρὸς τὸν Δ· καὶ ὁ Α ἄρα πρὸς τὸν Β τριπλασίονα λόγον ἔχει ἤπερ ὁ Γ πρὸς τὸν Δ. ὅπερ ἔδει δεῖξαι.

ἐὰν ὦσιν ὁσοιδηποτοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, καὶ πολλαπλασιάσας ἕκαστος ἑαυτὸν ποιῇ τινα, οἱ γενόμενοι ἐξ αὐτῶν ἀνάλογον ἔσονται· καὶ ἐὰν οἱ ἐξ ἀρχῆς τοὺς γενομένους πολλαπλασιάσαντες ποιῶσί τινας, καὶ αὐτοὶ ἀνάλογον ἔσονται καὶ ἀεὶ περὶ τοὺς ἄκρους τοῦτο συμβαίνει.

ἔστωσαν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, οἱ Α, Β, Γ, ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Β πρὸς τὸν Γ, καὶ οἱ Α, Β, Γ ἑαυτοὺς μὲν πολλαπλασιάσαντες τοὺς Δ, Ε, Ζ ποιείτωσαν, τοὺς δὲ Δ, Ε, Ζ πολλαπλασιάσαντες τοὺς Η, Θ, Κ ποιείτωσαν· λέγω, ὅτι οἵ τε Δ, Ε, Ζ καὶ οἱ Η, Θ, Κ ἑξῆς ἀνάλογόν εἰσιν.

ὁ μὲν γὰρ Α τὸν Β πολλαπλασιάσας τὸν Λ ποιείτω, ἑκάτερος δὲ τῶν Α, Β τὸν Λ πολλαπλασιάσας ἑκάτερον τῶν Μ, Ν ποιείτω. καὶ πάλιν ὁ μὲν Β τὸν Γ πολλαπλασιάσας τὸν Ξ ποιείτω, ἑκάτερος δὲ τῶν Β, Γ τὸν Ξ πολλαπλασιάσας ἑκάτερον τῶν Ο, Π ποιείτω.

ὁμοίως δὴ τοῖς ἐπάνω δείξομεν, ὅτι οἱ Δ, Λ, Ε καὶ οἱ Η, Μ, Ν, Θ ἑξῆς εἰσιν ἀνάλογον ἐν τῷ τοῦ Α πρὸς τὸν Β λόγῳ, καὶ ἔτι οἱ Ε, Ξ, Ζ καὶ οἱ Θ, Ο, Π, Κ ἑξῆς εἰσιν ἀνάλογον ἐν τῷ τοῦ Β πρὸς τὸν Γ λόγῳ. καί ἐστιν ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Β πρὸς τὸν Γ· καὶ οἱ Δ, Λ, Ε ἄρα τοῖς Ε, Ξ, Ζ ἐν τῷ αὐτῷ λόγῳ εἰσὶ καὶ ἔτι οἱ Η, Μ, Ν, Θ τοῖς Θ, Ο, Π, Κ. καί ἐστιν ἴσον τὸ μὲν τῶν Δ, Λ, Ε πλῆθος τῷ τῶν Ε, Ξ, Ζ πλήθει, τὸ δὲ τῶν Η, Μ, Ν, Θ τῷ τῶν Θ, Ο, Π, Κ· διʼ ἴσου ἄρα ἐστὶν ὡς μὲν ὁ Δ πρὸς τὸν Ε, οὕτως ὁ Ε πρὸς τὸν Ζ, ὡς δὲ ὁ Η πρὸς τὸν Θ, οὕτως ὁ Θ πρὸς τὸν Κ· ὅπερ ἔδει δεῖξαι.