Elementa
Euclid
Euclid. Euclidis Opera omnia, Volume 1-5. Heiberg, Johan Ludvig, editor. Leipzig: Teubner, 1883-88.
ἐὰν δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους ὦσιν, καὶ πολλαπλασιάσας ἑκάτερος ἑαυτὸν ποιῇ τινα, οἱ γενόμενοι ἐξ αὐτῶν πρῶτοι πρὸς ἀλλήλους ἔσονται, κἂν οἱ ἐξ ἀρχῆς τοὺς γενομένους πολλαπλασιάσαντες ποιῶσί τινας, κἀκεῖνοι πρῶτοι πρὸς ἀλλήλους ἔσονται καὶ ἀεὶ περὶ τοὺς ἄκρους τοῦτο συμβαίνει.
ἔστωσαν δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους οἱ Α, Β, καὶ ὁ Α ἑαυτὸν μὲν πολλαπλασιάσας τὸν Γ ποιείτω, τὸν δὲ Γ πολλαπλασιάσας τὸν Δ ποιείτω, ὁ δὲ Β ἑαυτὸν μὲν πολλαπλασιάσας τὸν Ε ποιείτω, τὸν δὲ Ε πολλαπλασιάσας τὸν Ζ ποιείτω· λέγω, ὅτι οἵ τε Γ, Ε καὶ οἱ Δ, Ζ πρῶτοι πρὸς ἀλλήλους εἰσίν.
ἐπεὶ γὰρ οἱ Α, Β πρῶτοι πρὸς ἀλλήλους εἰσίν, καὶ ὁ Α ἑαυτὸν πολλαπλασιάσας τὸν Γ πεποίηκεν, οἱ Γ, Β ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν. ἐπεὶ οὖν οἱ Γ, Β πρῶτοι πρὸς ἀλλήλους εἰσίν, καὶ ὁ Β ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν, οἱ Γ, Ε ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν. πάλιν, ἐπεὶ οἱ Α, Β πρῶτοι πρὸς ἀλλήλους εἰσίν, καὶ ὁ Β ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν, οἱ Α, Ε ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν. ἐπεὶ οὖν δύο ἀριθμοὶ οἱ Α, Γ πρὸς δύο ἀριθμοὺς τοὺς Β, Ε ἀμφότεροι πρὸς ἑκάτερον πρῶτοί εἰσιν, καὶ ὁ ἐκ τῶν Α, Γ ἄρα γενόμενος πρὸς τὸν ἐκ τῶν Β, Ε πρῶτός ἐστιν. καί ἐστιν ὁ μὲν ἐκ τῶν Α, Γ ὁ Δ, ὁ δὲ ἐκ τῶν Β, Ε ὁ Ζ. οἱ Δ, Ζ ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν· ὅπερ ἔδει δεῖξαι.
ἐὰν δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους ὦσιν, καὶ συναμφότερος πρὸς ἑκάτερον αὐτῶν πρῶτος ἔσται· καὶ ἐὰν συναμφότερος πρὸς ἕνα τινὰ αὐτῶν πρῶτος ᾖ, καὶ οἱ ἐξ ἀρχῆς ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους ἔσονται.
Συγκείσθωσαν γὰρ δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους οἱ ΑΒ, ΒΓ· λέγω, ὅτι καὶ συναμφότερος ὁ ΑΓ πρὸς ἑκάτερον τῶν ΑΒ, ΒΓ πρῶτός ἐστιν.
εἰ γὰρ μή εἰσιν οἱ ΓΑ, ΑΒ πρῶτοι πρὸς ἀλλήλους, μετρήσει τις τοὺς ΓΑ, ΑΒ ἀριθμός. μετρείτω, καὶ ἔστω ὁ Δ. ἐπεὶ οὖν ὁ Δ τοὺς ΓΑ, ΑΒ μετρεῖ, καὶ λοιπὸν ἄρα τὸν ΒΓ μετρήσει. μετρεῖ δὲ καὶ τὸν ΒΑ· ὁ Δ ἄρα τοὺς ΑΒ, ΒΓ μετρεῖ πρώτους ὄντας πρὸς ἀλλήλους· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τοὺς ΓΑ, ΑΒ ἀριθμοὺς ἀριθμός τις μετρήσει· οἱ ΓΑ, ΑΒ ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν. διὰ τὰ αὐτὰ δὴ καὶ οἱ ΑΓ, ΓΒ πρῶτοι πρὸς ἀλλήλους εἰσίν. ὁ ΓΑ ἄρα πρὸς ἑκάτερον τῶν ΑΒ, ΒΓ πρῶτός ἐστιν.
ἔστωσαν δὴ πάλιν οἱ ΓΑ, ΑΒ πρῶτοι πρὸς ἀλλήλους· λέγω, ὅτι καὶ οἱ ΑΒ, ΒΓ πρῶτοι πρὸς ἀλλήλους εἰσίν.
εἰ γὰρ μή εἰσιν οἱ ΑΒ, ΒΓ πρῶτοι πρὸς ἀλλήλους, μετρήσει τις τοὺς ΑΒ, ΒΓ ἀριθμός. μετρείτω, καὶ ἔστω ὁ Δ. καὶ ἐπεὶ ὁ Δ ἑκάτερον τῶν ΑΒ, ΒΓ μετρεῖ, καὶ ὅλον ἄρα τὸν ΓΑ μετρήσει. μετρεῖ δὲ καὶ τὸν ΑΒ· ὁ Δ ἄρα τοὺς ΓΑ, ΑΒ μετρεῖ πρώτους ὄντας πρὸς ἀλλήλους· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τοὺς ΑΒ, ΒΓ ἀριθμοὺς ἀριθμός τις μετρήσει. οἱ ΑΒ, ΒΓ ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν· ὅπερ ἔδει δεῖξαι.
ἅπας πρῶτος ἀριθμὸς πρὸς ἅπαντα ἀριθμόν, ὃν μὴ μετρεῖ, πρῶτός ἐστιν.
ἔστω πρῶτος ἀριθμὸς ὁ Α καὶ τὸν Β μὴ μετρείτω· λέγω, ὅτι οἱ Β, Α πρῶτοι πρὸς ἀλλήλους εἰσίν.
εἰ γὰρ μή εἰσιν οἱ Β, Α πρῶτοι πρὸς ἀλλήλους, μετρήσει τις αὐτοὺς ἀριθμός. μετρείτω ὁ Γ. ἐπεὶ ὁ Γ τὸν Β μετρεῖ, ὁ δὲ Α τὸν Β οὐ μετρεῖ, ὁ Γ ἄρα τῷ Α οὔκ ἐστιν ὁ αὐτός. καὶ ἐπεὶ ὁ Γ τοὺς Β, Α μετρεῖ, καὶ τὸν Α ἄρα μετρεῖ πρῶτον ὄντα μὴ ὢν αὐτῷ ὁ αὐτός· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τοὺς Β, Α μετρήσει τις ἀριθμός. οἱ Α, Β ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν· ὅπερ ἔδει δεῖξαι.
ἐὰν δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα, τὸν δὲ γενόμενον ἐξ αὐτῶν μετρῇ τις πρῶτος ἀριθμός, καὶ ἕνα τῶν ἐξ ἀρχῆς μετρήσει.
δύο γὰρ ἀριθμοὶ οἱ Α, Β πολλαπλασιάσαντες ἀλλήλους τὸν Γ ποιείτωσαν, τὸν δὲ Γ μετρείτω τις πρῶτος ἀριθμὸς ὁ Δ· λέγω, ὅτι ὁ Δ ἕνα τῶν Α, Β μετρεῖ.
τὸν γὰρ Α μὴ μετρείτω· καί ἐστι πρῶτος ὁ Δ· οἱ Α, Δ ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν. καὶ ὁσάκις ὁ Δ τὸν Γ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Ε. ἐπεὶ οὖν ὁ Δ τὸν Γ μετρεῖ κατὰ τὰς ἐν τῷ Ε μονάδας, ὁ Δ ἄρα τὸν Ε πολλαπλασιάσας τὸν Γ πεποίηκεν. ἀλλὰ μὴν καὶ ὁ Α τὸν β πολλαπλασιάσας τὸν Γ πεποίηκεν· ἴσος ἄρα ἐστὶν ὁ ἐκ τῶν Δ, Ε τῷ ἐκ τῶν Α, Β. ἔστιν ἄρα ὡς ὁ Δ πρὸς τὸν Α, οὕτως ὁ Β πρὸς τὸν Ε. οἱ δὲ Δ, Α πρῶτοι, οἱ δὲ πρῶτοι καὶ ἐλάχιστοι, οἱ δὲ ἐλάχιστοι μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων τὸν μείζονα καὶ ὁ ἐλάσσων τὸν ἐλάσσονα, τουτέστιν ὅ τε ἡγούμενος τὸν ἡγούμενον καὶ ὁ ἑπόμενος τὸν ἑπόμενον· ὁ Δ ἄρα τὸν Β μετρεῖ. ὁμοίως δὴ δείξομεν, ὅτι καὶ ἐὰν τὸν Β μὴ μετρῇ, τὸν Α μετρήσει. ὁ Δ ἄρα ἕνα τῶν Α, Β μετρεῖ· ὅπερ ἔδει δεῖξαι.
ἅπας σύνθετος ἀριθμὸς ὑπὸ πρώτου τινὸς ἀριθμοῦ μετρεῖται.
ἔστω σύνθετος ἀριθμὸς ὁ Α· λέγω, ὅτι ὁ Α ὑπὸ πρώτου τινὸς ἀριθμοῦ μετρεῖται.
ʼἐπεὶ γὰρ σύνθετός ἐστιν ὁ Α, μετρήσει τις αὐτὸν ἀριθμός. μετρείτω, καὶ ἔστω ὁ Β. καὶ εἰ μὲν πρῶτός ἐστιν ὁ Β, γεγονὸς ἂν εἴη τὸ ἐπιταχθέν. εἰ δὲ σύνθετος, μετρήσει τις αὐτὸν ἀριθμός. μετρείτω, καὶ ἔστω ὁ Γ. καὶ ἐπεὶ ὁ Γ τὸν Β μετρεῖ, ὁ δὲ Β τὸν Α μετρεῖ, καὶ ὁ Γ ἄρα τὸν Α μετρεῖ. καὶ εἰ μὲν πρῶτός ἐστιν ὁ Γ, γεγονὸς ἂν εἴη τὸ ἐπιταχθέν. εἰ δὲ σύνθετος, μετρήσει τις αὐτὸν ἀριθμός. τοιαύτης δὴ γινομένης ἐπισκέψεως ληφθήσεταί τις πρῶτος ἀριθμός, ὃς μετρήσει. εἰ γὰρ οὐ ληφθήσεται, μετρήσουσι τὸν Α ἀριθμὸν ἄπειροι ἀριθμοί, ὧν ἕτερος ἑτέρου ἐλάσσων ἐστίν· ὅπερ ἐστὶν ἀδύνατον ἐν ἀριθμοῖς. ληφθήσεταί τις ἄρα πρῶτος ἀριθμός, ὃς μετρήσει τὸν πρὸ ἑαυτοῦ, ὃς καὶ τὸν Α μετρήσει.
ἅπας ἄρα σύνθετος ἀριθμὸς ὑπὸ πρώτου τινὸς ἀριθμοῦ μετρεῖται· ὅπερ ἔδει δεῖξαι.
ἅπας ἀριθμὸς ἤτοι πρῶτός ἐστιν ἢ ὑπὸ πρώτου τινὸς ἀριθμοῦ μετρεῖται.
ἔστω ἀριθμὸς ὁ Α· λέγω, ὅτι ὁ Α ἤτοι πρῶτός ἐστιν ἢ ὑπὸ πρώτου τινὸς ἀριθμοῦ μετρεῖται.
εἰ μὲν οὖν πρῶτός ἐστιν ὁ Α, γεγονὸς ἂν εἴη τὸ ἐπιταχθέν. εἰ δὲ σύνθετος, μετρήσει τις αὐτὸν πρῶτος ἀριθμός.
ἅπας ἄρα ἀριθμὸς ἤτοι πρῶτός ἐστιν ἢ ὑπὸ πρώτου τινὸς ἀριθμοῦ μετρεῖται· ὅπερ ἔδει δεῖξαι.
ἀριθμῶν δοθέντων ὁποσωνοῦν εὑρεῖν τοὺς ἐλαχίστους τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς.
ἔστωσαν οἱ δοθέντες ὁποσοιοῦν ἀριθμοὶ οἱ Α, Β, Γ· δεῖ δὴ εὑρεῖν τοὺς ἐλαχίστους τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Β, Γ.
οἱ Α, Β, Γ γὰρ ἤτοι πρῶτοι πρὸς ἀλλήλους εἰσὶν ἢ οὔ. εἰ μὲν οὖν οἱ Α, Β, Γ πρῶτοι πρὸς ἀλλήλους εἰσίν, ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς.
εἰ δὲ οὔ, εἰλήφθω τῶν Α, Β, Γ τὸ μέγιστον κοινὸν μέτρον ὁ Δ, καὶ ὁσάκις ὁ Δ ἕκαστον τῶν Α, Β, Γ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν ἑκάστῳ τῶν Ε, Ζ, Η. καὶ ἕκαστος ἄρα τῶν Ε, Ζ, Η ἕκαστον τῶν Α, Β, Γ μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας. οἱ Ε, Ζ, Η ἄρα τοὺς Α, Β, Γ ἰσάκις μετροῦσιν· οἱ Ε, Ζ, Η ἄρα τοῖς Α, Β, Γ ἐν τῷ αὐτῷ λόγῳ εἰσίν. λέγω δή, ὅτι καὶ ἐλάχιστοι. εἰ γὰρ μή εἰσιν οἱ Ε, Ζ, Η ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Β, Γ, ἔσονται τινες τῶν Ε, Ζ, Η ἐλάσσονες ἀριθμοὶ ἐν τῷ αὐτῷ λόγῳ ὄντες τοῖς Α, Β, Γ. ἔστωσαν οἱ Θ, Κ, Λ· ἰσάκις ἄρα ὁ Θ τὸν Α μετρεῖ καὶ ἑκάτερος τῶν Κ, Λ ἑκάτερον τῶν Β, Γ. ὁσάκις δὲ ὁ Θ τὸν Α μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Μ· καὶ ἑκάτερος ἄρα τῶν Κ, Λ ἑκάτερον τῶν Β, Γ μετρεῖ κατὰ τὰς ἐν τῷ Μ μονάδας. καὶ ἐπεὶ ὁ Θ τὸν Α μετρεῖ κατὰ τὰς ἐν τῷ Μ μονάδας, καὶ ὁ Μ ἄρα τὸν Α μετρεῖ κατὰ τὰς ἐν τῷ Θ μονάδας. διὰ τὰ αὐτὰ δὴ ὁ Μ καὶ ἑκάτερον τῶν Β, Γ μετρεῖ κατὰ τὰς ἐν ἑκατέρῳ τῶν Κ, Λ μονάδας· ὁ Μ ἄρα τοὺς Α, Β, Γ μετρεῖ. καὶ ἐπεὶ ὁ Θ τὸν Α μετρεῖ κατὰ τὰς ἐν τῷ Μ μονάδας, ὁ Θ ἄρα τὸν Μ πολλαπλασιάσας τὸν Α πεποίηκεν. διὰ τὰ αὐτὰ δὴ καὶ ὁ Ε τὸν Δ πολλαπλασιάσας τὸν Α πεποίηκεν. ἴσος ἄρα ἐστὶν ὁ ἐκ τῶν Ε, Δ τῷ ἐκ τῶν Θ, Μ. ἔστιν ἄρα ὡς ὁ Ε πρὸς τὸν Θ, οὕτως ὁ Μ πρὸς τὸν Δ. μείζων δὲ ὁ Ε τοῦ Θ· μείζων ἄρα καὶ ὁ Μ τοῦ Δ. καὶ μετρεῖ τοὺς Α, Β, Γ· ὅπερ ἐστὶν ἀδύνατον· ὑπόκειται γὰρ ὁ Δ τῶν Α, Β, Γ τὸ μέγιστον κοινὸν μέτρον. οὐκ ἄρα ἔσονταί τινες τῶν Ε, Ζ, Η ἐλάσσονες ἀριθμοὶ ἐν τῷ αὐτῷ λόγῳ ὄντες τοῖς Α, Β, Γ. οἱ Ε, Ζ, Η ἄρα ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Β, Γ· ὅπερ ἔδει δεῖξαι.
δύο ἀριθμῶν δοθέντων εὑρεῖν, ὃν ἐλάχιστον μετροῦσιν ἀριθμόν.
ἔστωσαν οἱ δοθέντες δύο ἀριθμοὶ οἱ Α, Β· δεῖ δὴ εὑρεῖν, ὃν ἐλάχιστον μετροῦσιν ἀριθμόν.
οἱ Α, Β γὰρ ἤτοι πρῶτοι πρὸς ἀλλήλους εἰσὶν ἢ οὔ. ἔστωσαν πρότερον οἱ Α, Β πρῶτοι πρὸς ἀλλήλους, καὶ ὁ Α τὸν Β πολλαπλασιάσας τὸν Γ ποιείτω· καὶ ὁ Β ἄρα τὸν Α πολλαπλασιάσας τὸν Γ πεποίηκεν. οἱ Α, Β ἄρα τὸν Γ μετροῦσιν. λέγω δή, ὅτι καὶ ἐλάχιστον. εἰ γὰρ μή, μετρήσουσί τινα ἀριθμὸν οἱ Α, Β ἐλάσσονα ὄντα τοῦ Γ. μετρείτωσαν τὸν Δ. καὶ ὁσάκις ὁ Α τὸν Δ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Ε, ὁσάκις δὲ ὁ Β τὸν Δ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Ζ· ὁ μὲν Α ἄρα τὸν Ε πολλαπλασιάσας τὸν Δ πεποίηκεν, ὁ δὲ Β τὸν Ζ πολλαπλασιάσας τὸν Δ πεποίηκεν· ἴσος ἄρα ἐστὶν ὁ ἐκ τῶν Α, Ε τῷ ἐκ τῶν Β, Ζ. ἔστιν ἄρα ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Ζ πρὸς τὸν Ε. οἱ δὲ Α, Β πρῶτοι, οἱ δὲ πρῶτοι καὶ ἐλάχιστοι, οἱ δὲ ἐλάχιστοι μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων τὸν μείζονα καὶ ὁ ἐλάσσων τὸν ἐλάσσονα· ὁ Β ἄρα τὸν Ε μετρεῖ, ὡς ἑπόμενος ἑπόμενον. καὶ ἐπεὶ ὁ Α τοὺς Β, Ε πολλαπλασιάσας τοὺς Γ, Δ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Β πρὸς τὸν Ε, οὕτως ὁ Γ πρὸς τὸν Δ. μετρεῖ δὲ ὁ Β τὸν Ε· μετρεῖ ἄρα καὶ ὁ Γ τὸν Δ ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οἱ Α, Β μετροῦσί τινα ἀριθμὸν ἐλάσσονα ὄντα τοῦ Γ. ὁ Γ ἄρα ἐλάχιστος ὢν ὑπὸ τῶν Α, Β μετρεῖται.
μὴ ἔστωσαν δὴ οἱ Α, Β πρῶτοι πρὸς ἀλλήλους, καὶ εἰλήφθωσαν ἐλάχιστοι ἀριθμοὶ τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Β οἱ Ζ, Ε· ἴσος ἄρα ἐστὶν ὁ ἐκ τῶν Α, Ε τῷ ἐκ τῶν Β, Ζ. καὶ ὁ Α τὸν Ε πολλαπλασιάσας τὸν Γ ποιείτω· καὶ ὁ Β ἄρα τὸν Ζ πολλαπλασιάσας τὸν Γ πεποίηκεν· οἱ Α, Β ἄρα τὸν Γ μετροῦσιν. λέγω δή, ὅτι καὶ ἐλάχιστον. εἰ γὰρ μή, μετρήσουσί τινα ἀριθμὸν οἱ Α, Β ἐλάσσονα ὄντα τοῦ Γ. μετρείτωσαν τὸν Δ. καὶ ὁσάκις μὲν ὁ Α τὸν Δ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Η, ὁσάκις δὲ ὁ Β τὸν Δ μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Θ. ὁ μὲν Α ἄρα τὸν Η πολλαπλασιάσας τὸν Δ πεποίηκεν, ὁ δὲ Β τὸν Θ πολλαπλασιάσας τὸν Δ πεποίηκεν. ἴσος ἄρα ἐστὶν ὁ ἐκ τῶν Α, Η τῷ ἐκ τῶν Β, Θ· ἔστιν ἄρα ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Θ πρὸς τὸν Η. ὡς δὲ ὁ Α πρὸς τὸν Β, οὕτως ὁ Ζ πρὸς τὸν Ε· καὶ ὡς ἄρα ὁ Ζ πρὸς τὸν Ε, οὕτως ὁ Θ πρὸς τὸν Η. οἱ δὲ Ζ, Ε ἐλάχιστοι, οἱ δὲ ἐλάχιστοι μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων τὸν μείζονα καὶ ὁ ἐλάσσων τὸν ἐλάσσονα· ὁ Ε ἄρα τὸν Η μετρεῖ. καὶ ἐπεὶ ὁ Α τοὺς Ε, Η πολλαπλασιάσας τοὺς Γ, Δ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Ε πρὸς τὸν Η, οὕτως ὁ Γ πρὸς τὸν Δ. ὁ δὲ Ε τὸν Η μετρεῖ· καὶ ὁ Γ ἄρα τὸν Δ μετρεῖ ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οἱ Α, Β μετρήσουσί τινα ἀριθμὸν ἐλάσσονα ὄντα τοῦ Γ. ὁ Γ ἄρα ἐλάχιστος ὢν ὑπὸ τῶν Α, Β μετρεῖται· ὅπερ ἔδει δεῖξαι.
ἐὰν δύο ἀριθμοὶ ἀριθμόν τινα μετρῶσιν, καὶ ὁ ἐλάχιστος ὑπʼ αὐτῶν μετρούμενος τὸν αὐτὸν μετρήσει.
δύο γὰρ ἀριθμοὶ οἱ Α, Β ἀριθμόν τινα τὸν ΓΔ μετρείτωσαν, ἐλάχιστον δὲ τὸν Ε· λέγω, ὅτι καὶ ὁ Ε τὸν ΓΔ μετρεῖ.
εἰ γὰρ οὐ μετρεῖ ὁ Ε τὸν ΓΔ, ὁ Ε τὸν ΔΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΓΖ. καὶ ἐπεὶ οἱ Α, Β τὸν Ε μετροῦσιν, ὁ δὲ Ε τὸν ΔΖ μετρεῖ, καὶ οἱ Α, Β ἄρα τὸν ΔΖ μετρήσουσιν. μετροῦσι δὲ καὶ ὅλον τὸν ΓΔ· καὶ λοιπὸν ἄρα τὸν ΓΖ μετρήσουσιν ἐλάσσονα ὄντα τοῦ Ε· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οὐ μετρεῖ ὁ Ε τὸν ΓΔ· μετρεῖ ἄρα· ὅπερ ἔδει δεῖξαι.
τριῶν ἀριθμῶν δοθέντων εὑρεῖν, ὃν ἐλάχιστον μετροῦσιν ἀριθμόν.
ἔστωσαν οἱ δοθέντες τρεῖς ἀριθμοὶ οἱ Α, Β, Γ· δεῖ δὴ εὑρεῖν, ὃν ἐλάχιστον μετροῦσιν ἀριθμόν.
εἰλήφθω γὰρ ὑπὸ δύο τῶν Α, Β ἐλάχιστος μετρούμενος ὁ Δ. ὁ δὴ Γ τὸν Δ ἤτοι μετρεῖ ἢ οὐ μετρεῖ. μετρείτω πρότερον. μετροῦσι δὲ καὶ οἱ Α, Β τὸν Δ· οἱ Α, Β, Γ ἄρα τὸν Δ μετροῦσιν. λέγω δή, ὅτι καὶ ἐλάχιστον. εἰ γὰρ μή, μετρήσουσιν τινα ἀριθμὸν οἱ Α, Β, Γ ἐλάσσονα ὄντα τοῦ Δ. μετρείτωσαν τὸν Ε. ἐπεὶ οἱ Α, Β, Γ τὸν Ε μετροῦσιν, καὶ οἱ Α, Β ἄρα τὸν Ε μετροῦσιν. καὶ ὁ ἐλάχιστος ἄρα ὑπὸ τῶν Α, Β μετρούμενος τὸν Ε μετρήσει. ἐλάχιστος δὲ ὑπὸ τῶν Α, Β μετρούμενός ἐστιν ὁ Δ· ὁ Δ ἄρα τὸν Ε μετρήσει ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οἱ Α, Β, Γ μετρήσουσί τινα ἀριθμὸν ἐλάσσονα ὄντα τοῦ Δ· οἱ Α, Β, Γ ἄρα ἐλάχιστον τὸν Δ μετροῦσιν.
μὴ μετρείτω δὴ πάλιν ὁ Γ τὸν Δ, καὶ εἰλήφθω ὑπὸ τῶν Γ, Δ ἐλάχιστος μετρούμενος ἀριθμὸς ὁ Ε. ἐπεὶ οἱ Α, Β τὸν Δ μετροῦσιν, ὁ δὲ Δ τὸν Ε μετρεῖ, καὶ οἱ Α, Β ἄρα τὸν Ε μετροῦσιν. μετρεῖ δὲ καὶ ὁ Γ τὸν Ε· καὶ οἱ Α, Β, Γ ἄρα τὸν Ε μετροῦσιν. λέγω δή, ὅτι καὶ ἐλάχιστον. εἰ γὰρ μή, μετρήσουσί τινα οἱ Α, Β, Γ ἐλάσσονα ὄντα τοῦ Ε. μετρείτωσαν τὸν Ζ. ἐπεὶ οἱ Α, Β, Γ τὸν Ζ μετροῦσιν, καὶ οἱ Α, Β ἄρα τὸν Ζ μετροῦσιν· καὶ ὁ ἐλάχιστος ἄρα ὑπὸ τῶν Α, Β μετρούμενος τὸν Ζ μετρήσει. ἐλάχιστος δὲ ὑπὸ τῶν Α, Β μετρούμενός ἐστιν ὁ Δ· ὁ Δ ἄρα τὸν Ζ μετρεῖ. μετρεῖ δὲ καὶ ὁ Γ τὸν Ζ· οἱ Δ, Γ ἄρα τὸν Ζ μετροῦσιν· ὥστε καὶ ὁ ἐλάχιστος ὑπὸ τῶν Δ, Γ μετρούμενος τὸν Ζ μετρήσει. ὁ δὲ ἐλάχιστος ὑπὸ τῶν Γ, Δ μετρούμενός ἐστιν ὁ Ε· ὁ Ε ἄρα τὸν Ζ μετρεῖ ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οἱ Α, Β, Γ μετρήσουσί τινα ἀριθμὸν ἐλάσσονα ὄντα τοῦ Ε. ὁ Ε ἄρα ἐλάχιστος ὢν ὑπὸ τῶν Α, Β, Γ μετρεῖται· ὅπερ ἔδει δεῖξαι.
ἐὰν ἀριθμὸς ὑπό τινος ἀριθμοῦ μετρῆται, ὁ μετρούμενος ὁμώνυμον μέρος ἕξει τῷ μετροῦντι.
ἀριθμὸς γὰρ ὁ Α ὑπό τινος ἀριθμοῦ τοῦ Β μετρείσθω· λέγω, ὅτι ὁ Α ὁμώνυμον μέρος ἔχει τῷ Β.
ὁσάκις γὰρ ὁ Β τὸν Α μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Γ. ἐπεὶ ὁ Β τὸν Α μετρεῖ κατὰ τὰς ἐν τῷ Γ μονάδας, μετρεῖ δὲ καὶ ἡ Δ μονὰς τὸν Γ ἀριθμὸν κατὰ τὰς ἐν αὐτῷ μονάδας, ἰσάκις ἄρα ἡ Δ μονὰς τὸν Γ ἀριθμὸν μετρεῖ καὶ ὁ Β τὸν Α. ἐναλλὰξ ἄρα ἰσάκις ἡ Δ μονὰς τὸν Β ἀριθμὸν μετρεῖ καὶ ὁ Γ τὸν Α· ὃ ἄρα μέρος ἐστὶν ἡ Δ μονὰς τοῦ Β ἀριθμοῦ, τὸ αὐτὸ μέρος ἐστὶ καὶ ὁ Γ τοῦ Α. ἡ δὲ Δ μονὰς τοῦ Β ἀριθμοῦ μέρος ἐστὶν ὁμώνυμον αὐτῷ· καὶ ὁ Γ ἄρα τοῦ Α μέρος ἐστὶν ὁμώνυμον τῷ Β. ὥστε ὁ Α μέρος ἔχει τὸν Γ ὁμώνυμον ὄντα τῷ Β· ὅπερ ἔδει δεῖξαι.
ἐὰν ἀριθμὸς μέρος ἔχῃ ὁτιοῦν, ὑπὸ ὁμωνύμου ἀριθμοῦ μετρηθήσεται τῷ μέρει.
ἀριθμὸς γὰρ ὁ Α μέρος ἐχέτω ὁτιοῦν τὸν Β, καὶ τῷ Β μέρει ὁμώνυμος ἔστω ἀριθμὸς ὁ Γ· λέγω, ὅτι ὁ Γ τὸν Α μετρεῖ.
ἐπεὶ γὰρ ὁ Β τοῦ Α μέρος ἐστὶν ὁμώνυμον τῷ Γ, ἔστι δὲ καὶ ἡ Δ μονὰς τοῦ Γ μέρος ὁμώνυμον αὐτῷ, ὃ ἄρα μέρος ἐστὶν ἡ Δ μονὰς τοῦ Γ ἀριθμοῦ, τὸ αὐτὸ μέρος ἐστὶ καὶ ὁ Β τοῦ Α· ἰσάκις ἄρα ἡ Δ μονὰς τὸν Γ ἀριθμὸν μετρεῖ καὶ ὁ Β τὸν Α. ἐναλλὰξ ἄρα ἰσάκις ἡ Δ μονὰς τὸν Β ἀριθμὸν μετρεῖ καὶ ὁ Γ τὸν Α. ὁ Γ ἄρα τὸν Α μετρεῖ· ὅπερ ἔδει δεῖξαι.
ἀριθμὸν εὑρεῖν, ὃς ἐλάχιστος ὢν ἕξει τὰ δοθέντα μέρη.
ἔστω τὰ δοθέντα μέρη τὰ Α, Β, Γ· δεῖ δὴ ἀριθμὸν εὑρεῖν, ὃς ἐλάχιστος ὢν ἕξει τὰ Α, Β, Γ μέρη.
ἔστωσαν γὰρ τοῖς Α, Β, Γ μέρεσιν ὁμώνυμοι ἀριθμοὶ οἱ Δ, Ε, Ζ, καὶ εἰλήφθω ὑπὸ τῶν Δ, Ε, Ζ ἐλάχιστος μετρούμενος ἀριθμὸς ὁ Η.
ὁ Η ἄρα ὁμώνυμα μέρη ἔχει τοῖς Δ, Ε, Ζ. τοῖς δὲ Δ, Ε, Ζ ὁμώνυμα μέρη ἐστὶ τὰ Α, Β, Γ· ὁ Η ἄρα ἔχει τὰ Α, Β, Γ μέρη. λέγω δή, ὅτι καὶ ἐλάχιστος ὤν. εἰ γὰρ μή, ἔσται τις τοῦ Η ἐλάσσων ἀριθμός, ὃς ἕξει τὰ Α, Β, Γ μέρη. ἔστω ὁ Θ. ἐπεὶ ὁ Θ ἔχει τὰ Α, Β, Γ μέρη, ὁ Θ ἄρα ὑπὸ ὁμωνύμων ἀριθμῶν μετρηθήσεται τοῖς Α, Β, Γ μέρεσιν. τοῖς δὲ Α, Β, Γ μέρεσιν ὁμώνυμοι ἀριθμοί εἰσιν οἱ Δ, Ε, Ζ· ὁ Θ ἄρα ὑπὸ τῶν Δ, Ε, Ζ μετρεῖται. καί ἐστιν ἐλάσσων τοῦ Η· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ἔσται τις τοῦ Η ἐλάσσων ἀριθμός, ὃς ἕξει τὰ Α, Β, Γ μέρη· ὅπερ ἔδει δεῖξαι.
ἐὰν ὦσιν ὁσοιδηποτοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, οἱ δὲ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους ὦσιν, ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς.
ἔστωσαν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον οἱ Α, Β, Γ, δ, οἱ δὲ ἄκροι αὐτῶν οἱ Α, Δ πρῶτοι πρὸς ἀλλήλους ἔστωσαν· λέγω, ὅτι οἱ Α, Β, Γ, Δ ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς.
εἰ γὰρ μή, ἔστωσαν ἐλάττονες τῶν Α, Β, Γ, Δ οἱ Ε, Ζ, Η, Θ ἐν τῷ αὐτῷ λόγῳ ὄντες αὐτοῖς. καὶ ἐπεὶ οἱ α, Β, Γ, Δ ἐν τῷ αὐτῷ λόγῳ εἰσὶ τοῖς Ε, Ζ, Η, Θ, καί ἐστιν ἴσον τὸ πλῆθος τῶν Α, Β, Γ, Δ τῷ πλήθει τῶν Ε, Ζ, Η, Θ, διʼ ἴσου ἄρα ἐστὶν ὡς ὁ Α πρὸς τὸν Δ, ὁ Ε πρὸς τὸν Θ. οἱ δὲ Α, Δ πρῶτοι, οἱ δὲ πρῶτοι καὶ ἐλάχιστοι, οἱ δὲ ἐλάχιστοι ἀριθμοὶ μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων τὸν μείζονα καὶ ὁ ἐλάσσων τὸν ἐλάσσονα, τουτέστιν ὅ τε ἡγούμενος τὸν ἡγούμενον καὶ ὁ ἑπόμενος τὸν ἑπόμενον. μετρεῖ ἄρα ὁ Α τὸν Ε ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα οἱ Ε, Ζ, Η, Θ ἐλάσσονες ὄντες τῶν Α, Β, Γ, Δ ἐν τῷ αὐτῷ λόγῳ εἰσὶν αὐτοῖς. οἱ Α, Β, Γ, Δ ἄρα ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς· ὅπερ ἔδει δεῖξαι.
ἀριθμοὺς εὑρεῖν ἑξῆς ἀνάλογον ἐλαχίστους, ὅσους ἂν ἐπιτάξῃ τις, ἐν τῷ δοθέντι λόγῳ.
ἔστω ὁ δοθεὶς λόγος ἐν ἐλαχίστοις ἀριθμοῖς ὁ τοῦ Α πρὸς τὸν Β· δεῖ δὴ ἀριθμοὺς εὑρεῖν ἑξῆς ἀνάλογον ἐλαχίστους, ὅσους ἄν τις ἐπιτάξῃ, ἐν τῷ τοῦ Α πρὸς τὸν Β λόγῳ.
Ἐπιτετάχθωσαν δὴ τέσσαρες, καὶ ὁ Α ἑαυτὸν πολλαπλασιάσας τὸν Γ ποιείτω, τὸν δὲ Β πολλαπλασιάσας τὸν Δ ποιείτω, καὶ ἔτι ὁ Β ἑαυτὸν πολλαπλασιάσας τὸν Ε ποιείτω, καὶ ἔτι ὁ Α τοὺς Γ, Δ, Ε πολλαπλασιάσας τοὺς Ζ, Η, Θ ποιείτω, ὁ δὲ Β τὸν Ε πολλαπλασιάσας τὸν Κ ποιείτω.
καὶ ἐπεὶ ὁ Α ἑαυτὸν μὲν πολλαπλασιάσας τὸν Γ πεποίηκεν, τὸν δὲ Β πολλαπλασιάσας τὸν Δ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Γ πρὸς τὸν Δ. πάλιν, ἐπεὶ ὁ μὲν Α τὸν Β πολλαπλασιάσας τὸν Δ πεποίηκεν, ὁ δὲ Β ἑαυτὸν πολλαπλασιάσας τὸν Ε πεποίηκεν, ἑκάτερος ἄρα τῶν Α, Β τὸν Β πολλαπλασιάσας ἑκάτερον τῶν Δ, Ε πεποίηκεν. ἔστιν ἄρα ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Δ πρὸς τὸν Ε. ἀλλʼ ὡς ὁ Α πρὸς τὸν Β, ὁ Γ πρὸς τὸν Δ· καὶ ὡς ἄρα ὁ Γ πρὸς τὸν Δ, ὁ Δ πρὸς τὸν Ε. καὶ ἐπεὶ ὁ Α τοὺς Γ, Δ πολλαπλασιάσας τοὺς Ζ, Η πεποίηκεν, ἔστιν ἄρα ὡς ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Ζ πρὸς τὸν Η. ὡς δὲ ὁ Γ πρὸς τὸν Δ, οὕτως ἦν ὁ Α πρὸς τὸν Β· καὶ ὡς ἄρα ὁ Α πρὸς τὸν Β, ὁ Ζ πρὸς τὸν Η. πάλιν, ἐπεὶ ὁ Α τοὺς Δ, Ε πολλαπλασιάσας τοὺς Η, Θ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Δ πρὸς τὸν Ε, ὁ Η πρὸς τὸν Θ. ἀλλʼ ὡς ὁ Δ πρὸς τὸν Ε, ὁ Α πρὸς τὸν Β. καὶ ὡς ἄρα ὁ Α πρὸς τὸν Β, οὕτως ὁ Η πρὸς τὸν Θ. καὶ ἐπεὶ οἱ Α, Β τὸν Ε πολλαπλασιάσαντες τοὺς Θ, Κ πεποιήκασιν, ἔστιν ἄρα ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Θ πρὸς τὸν Κ. ἀλλʼ ὡς ὁ Α πρὸς τὸν Β, οὕτως ὅ τε Ζ πρὸς τὸν Η καὶ ὁ Η πρὸς τὸν Θ. καὶ ὡς ἄρα ὁ Ζ πρὸς τὸν Η, οὕτως ὅ τε Η πρὸς τὸν Θ καὶ ὁ Θ πρὸς τὸν Κ· οἱ Γ, Δ, Ε ἄρα καὶ οἱ Ζ, Η, Θ, Κ ἀνάλογόν εἰσιν ἐν τῷ τοῦ Α πρὸς τὸν Β λόγῳ. λέγω δή, ὅτι καὶ ἐλάχιστοι. ἐπεὶ γὰρ οἱ Α, Β ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς, οἱ δὲ ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων πρῶτοι πρὸς ἀλλήλους εἰσίν, οἱ Α, Β ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν. καὶ ἑκάτερος μὲν τῶν Α, Β ἑαυτὸν πολλαπλασιάσας ἑκάτερον τῶν Γ, Ε πεποίηκεν, ἑκάτερον δὲ τῶν Γ, Ε πολλαπλασιάσας ἑκάτερον τῶν Ζ, Κ πεποίηκεν· οἱ Γ, Ε ἄρα καὶ οἱ Ζ, Κ πρῶτοι πρὸς ἀλλήλους εἰσίν. ἐὰν δὲ ὦσιν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, οἱ δὲ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους ὦσιν, ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς. οἱ Γ, Δ, Ε ἄρα καὶ οἱ Ζ, Η, Θ, Κ ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Β· ὅπερ ἔδει δεῖξαι.
Πόρισμα
ἐκ δὴ τούτου φανερόν, ὅτι ἐὰν τρεῖς ἀριθμοὶ ἑξῆς ἀνάλογον ἐλάχιστοι ὦσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς, οἱ ἄκροι αὐτῶν τετράγωνοί εἰσιν, ἐὰν δὲ τέσσαρες, κύβοι.
ἐὰν ὦσιν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς, οἱ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους εἰσίν.
ἔστωσαν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς οἱ Α, Β, Γ, Δ· λέγω, ὅτι οἱ ἄκροι αὐτῶν οἱ Α, Δ πρῶτοι πρὸς ἀλλήλους εἰσίν.
εἰλήφθωσαν γὰρ δύο μὲν ἀριθμοὶ ἐλάχιστοι ἐν τῷ τῶν Α, Β, Γ, Δ λόγῳ οἱ Ε, Ζ, τρεῖς δὲ οἱ Η, Θ, Κ, καὶ ἑξῆς ἑνὶ πλείους, ἕως τὸ λαμβανόμενον πλῆθος ἴσον γένηται τῷ πλήθει τῶν Α, Β, Γ, Δ. εἰλήφθωσαν καὶ ἔστωσαν οἱ Λ, Μ, Ν, Ξ.
καὶ ἐπεὶ οἱ Ε, Ζ ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς, πρῶτοι πρὸς ἀλλήλους εἰσίν. καὶ ἐπεὶ ἑκάτερος τῶν Ε, Ζ ἑαυτὸν μὲν πολλαπλασιάσας ἑκάτερον τῶν Η, Κ πεποίηκεν, ἑκάτερον δὲ τῶν Η, Κ πολλαπλασιάσας ἑκάτερον τῶν Λ, Ξ πεποίηκεν, καὶ οἱ Η, Κ ἄρα καὶ οἱ Λ, Ξ πρῶτοι πρὸς ἀλλήλους εἰσίν. καὶ ἐπεὶ οἱ Α, Β, Γ, Δ ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς, εἰσὶ δὲ καὶ οἱ Λ, Μ, Ν, Ξ ἐλάχιστοι ἐν τῷ αὐτῷ λόγῳ ὄντες τοῖς Α, Β, Γ, Δ, καί ἐστιν ἴσον τὸ πλῆθος τῶν Α, Β, Γ, Δ τῷ πλήθει τῶν Λ, Μ, Ν, Ξ, ἕκαστος ἄρα τῶν Α, Β, Γ, Δ ἑκάστῳ τῶν Λ, Μ, Ν, Ξ ἴσος ἐστίν· ἴσος ἄρα ἐστὶν ὁ μὲν Α τῷ Λ, ὁ δὲ Δ τῷ Ξ. καί εἰσιν οἱ Λ, Ξ πρῶτοι πρὸς ἀλλήλους. καὶ οἱ Α, Δ ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν· ὅπερ ἔδει δεῖξαι.
λόγων δοθέντων ὁποσωνοῦν ἐν ἐλαχίστοις ἀριθμοῖς ἀριθμοὺς εὑρεῖν ἑξῆς ἀνάλογον ἐλαχίστους ἐν τοῖς δοθεῖσι λόγοις.
ἔστωσαν οἱ δοθέντες λόγοι ἐν ἐλαχίστοις ἀριθμοῖς ὅ τε τοῦ Α πρὸς τὸν Β καὶ ὁ τοῦ Γ πρὸς τὸν Δ καὶ ἔτι ὁ τοῦ Ε πρὸς τὸν Ζ· δεῖ δὴ ἀριθμοὺς εὑρεῖν ἑξῆς ἀνάλογον ἐλαχίστους ἔν τε τῷ τοῦ Α πρὸς τὸν Β λόγῳ καὶ ἐν τῷ τοῦ Γ πρὸς τὸν Δ καὶ ἔτι ἐν τῷ τοῦ Ε πρὸς τὸν Ζ.
εἰλήφθω γὰρ ὁ ὑπὸ τῶν Β, Γ ἐλάχιστος μετρούμενος ἀριθμὸς ὁ Η. καὶ ὁσάκις μὲν ὁ Β τὸν Η μετρεῖ, τοσαυτάκις καὶ ὁ Α τὸν Θ μετρείτω, ὁσάκις δὲ ὁ Γ τὸν Η μετρεῖ, τοσαυτάκις καὶ ὁ Δ τὸν Κ μετρείτω. ὁ δὲ Ε τὸν Κ ἤτοι μετρεῖ ἢ οὐ μετρεῖ. μετρείτω πρότερον. καὶ ὁσάκις ὁ Ε τὸν Κ μετρεῖ, τοσαυτάκις καὶ ὁ Ζ τὸν Λ μετρείτω. καὶ ἐπεὶ ἰσάκις ὁ Α τὸν Θ μετρεῖ καὶ ὁ Β τὸν Η, ἔστιν ἄρα ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Θ πρὸς τὸν Η. διὰ τὰ αὐτὰ δὴ καὶ ὡς ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Η πρὸς τὸν Κ, καὶ ἔτι ὡς ὁ Ε πρὸς τὸν Ζ, οὕτως ὁ Κ πρὸς τὸν Λ· οἱ Θ, Η, Κ, Λ ἄρα ἑξῆς ἀνάλογόν εἰσιν ἔν τε τῷ τοῦ Α πρὸς τὸν Β καὶ ἐν τῷ τοῦ Γ πρὸς τὸν Δ καὶ ἔτι ἐν τῷ τοῦ Ε πρὸς τὸν Ζ λόγῳ. λέγω δή, ὅτι καὶ ἐλάχιστοι. εἰ γὰρ μή εἰσιν οἱ Θ, Η, Κ, Λ ἑξῆς ἀνάλογον ἐλάχιστοι ἔν τε τοῖς τοῦ Α πρὸς τὸν Β καὶ τοῦ Γ πρὸς τὸν Δ καὶ ἐν τῷ τοῦ Ε πρὸς τὸν Ζ λόγοις, ἔστωσαν οἱ Ν, Ξ, Μ, Ο. καὶ ἐπεί ἐστιν ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Ν πρὸς τὸν Ξ, οἱ δὲ Α, Β ἐλάχιστοι, οἱ δὲ ἐλάχιστοι μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας ἰσάκις ὅ τε μείζων τὸν μείζονα καὶ ὁ ἐλάσσων τὸν ἐλάσσονα, τουτέστιν ὅ τε ἡγούμενος τὸν ἡγούμενον καὶ ὁ ἑπόμενος τὸν ἑπόμενον, ὁ Β ἄρα τὸν Ξ μετρεῖ. διὰ τὰ αὐτὰ δὴ καὶ ὁ Γ τὸν Ξ μετρεῖ· οἱ Β, Γ ἄρα τὸν Ξ μετροῦσιν· καὶ ὁ ἐλάχιστος ἄρα ὑπὸ τῶν Β, Γ μετρούμενος τὸν Ξ μετρήσει. ἐλάχιστος δὲ ὑπὸ τῶν Β, Γ μετρεῖται ὁ Η· ὁ Η ἄρα τὸν Ξ μετρεῖ ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ἔσονταί τινες τῶν Θ, Η, Κ, Λ ἐλάσσονες ἀριθμοὶ ἑξῆς ἔν τε τῷ τοῦ Α πρὸς τὸν Β καὶ τῷ τοῦ Γ πρὸς τὸν Δ καὶ ἔτι τῷ τοῦ Ε πρὸς τὸν Ζ λόγῳ.
μὴ μετρείτω δὴ ὁ Ε τὸν Κ. καὶ εἰλήφθω ὑπὸ τῶν Ε, Κ ἐλάχιστος μετρούμενος ἀριθμὸς ὁ Μ. καὶ ὁσάκις μὲν ὁ Κ τὸν Μ μετρεῖ, τοσαυτάκις καὶ ἑκάτερος τῶν Θ, Η ἑκάτερον τῶν Ν, Ξ μετρείτω, ὁσάκις δὲ ὁ Ε τὸν Μ μετρεῖ, τοσαυτάκις καὶ ὁ Ζ τὸν Ο μετρείτω. ἐπεὶ ἰσάκις ὁ Θ τὸν Ν μετρεῖ καὶ ὁ Η τὸν Ξ, ἔστιν ἄρα ὡς ὁ Θ πρὸς τὸν Η, οὕτως ὁ Ν πρὸς τὸν Ξ. ὡς δὲ ὁ Θ πρὸς τὸν Η, οὕτως ὁ Α πρὸς τὸν Β· καὶ ὡς ἄρα ὁ Α πρὸς τὸν Β, οὕτως ὁ Ν πρὸς τὸν ξ. διὰ τὰ αὐτὰ δὴ καὶ ὡς ὁ Γ πρὸς τὸν Δ, οὕτως ὁ Ξ πρὸς τὸν Μ. πάλιν, ἐπεὶ ἰσάκις ὁ Ε τὸν Μ μετρεῖ καὶ ὁ Ζ τὸν Ο, ἔστιν ἄρα ὡς ὁ Ε πρὸς τὸν Ζ, οὕτως ὁ Μ πρὸς τὸν Ο· οἱ Ν, Ξ, Μ, Ο ἄρα ἑξῆς ἀνάλογόν εἰσιν ἐν τοῖς τοῦ τε Α πρὸς τὸν Β καὶ τοῦ Γ πρὸς τὸν Δ καὶ ἔτι τοῦ Ε πρὸς τὸν Ζ λόγοις. λέγω δή, ὅτι καὶ ἐλάχιστοι ἐν τοῖς ΑΒ, ΓΔ, ΕΖ λόγοις. εἰ γὰρ μή, ἔσονταί τινες τῶν Ν, Ξ, Μ, Ο ἐλάσσονες ἀριθμοὶ ἑξῆς ἀνάλογον ἐν τοῖς ΑΒ, ΓΔ, ΕΖ λόγοις. ἔστωσαν οἱ Π, Ρ, Σ, Τ. καὶ ἐπεί ἐστιν ὡς ὁ Π πρὸς τὸν Ρ, οὕτως ὁ Α πρὸς τὸν Β, οἱ δὲ Α, Β ἐλάχιστοι, οἱ δὲ ἐλάχιστοι μετροῦσι τοὺς τὸν αὐτὸν λόγον ἔχοντας αὐτοῖς ἰσάκις ὅ τε ἡγούμενος τὸν ἡγούμενον καὶ ὁ ἑπόμενος τὸν ἑπόμενον, ὁ Β ἄρα τὸν Ρ μετρεῖ. διὰ τὰ αὐτὰ δὴ καὶ ὁ Γ τὸν Ρ μετρεῖ· οἱ Β, Γ ἄρα τὸν Ρ μετροῦσιν. καὶ ὁ ἐλάχιστος ἄρα ὑπὸ τῶν Β, Γ μετρούμενος τὸν Ρ μετρήσει. ἐλάχιστος δὲ ὑπὸ τῶν Β, Γ μετρούμενός ἐστιν ὁ Η· ὁ Η ἄρα τὸν Ρ μετρεῖ. καί ἐστιν ὡς ὁ Η πρὸς τὸν Ρ, οὕτως ὁ Κ πρὸς τὸν Σ· καὶ ὁ Κ ἄρα τὸν Σ μετρεῖ. μετρεῖ δὲ καὶ ὁ Ε τὸν Σ· οἱ Ε, Κ ἄρα τὸν Σ μετροῦσιν. καὶ ὁ ἐλάχιστος ἄρα ὑπὸ τῶν Ε, Κ μετρούμενος τὸν Σ μετρήσει. ἐλάχιστος δὲ ὑπὸ τῶν Ε, Κ μετρούμενός ἐστιν ὁ Μ· ὁ Μ ἄρα τὸν Σ μετρεῖ ὁ μείζων τὸν ἐλάσσονα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ἔσονταί τινες τῶν Ν, Ξ, Μ, Ο ἐλάσσονες ἀριθμοὶ ἑξῆς ἀνάλογον ἔν τε τοῖς τοῦ Α πρὸς τὸν Β καὶ τοῦ Γ πρὸς τὸν Δ καὶ ἔτι τοῦ Ε πρὸς τὸν Ζ λόγοις· οἱ Ν, Ξ, Μ, Ο ἄρα ἑξῆς ἀνάλογον ἐλάχιστοί εἰσιν ἐν τοῖς ΑΒ, ΓΔ, ΕΖ λόγοις· ὅπερ ἔδει δεῖξαι.
οἱ ἐπίπεδοι ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχουσι τὸν συγκείμενον ἐκ τῶν πλευρῶν.
ἔστωσαν ἐπίπεδοι ἀριθμοὶ οἱ Α, Β, καὶ τοῦ μὲν Α πλευραὶ ἔστωσαν οἱ Γ, Δ ἀριθμοί, τοῦ δὲ Β οἱ Ε, Ζ· λέγω, ὅτι ὁ Α πρὸς τὸν Β λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν.
λόγων γὰρ δοθέντων τοῦ τε ὃν ἔχει ὁ Γ πρὸς τὸν Ε καὶ ὁ Δ πρὸς τὸν Ζ εἰλήφθωσαν ἀριθμοὶ ἑξῆς ἐλάχιστοι ἐν τοῖς ΓΕ, ΔΖ λόγοις, οἱ Η, Θ, Κ, ὥστε εἶναι ὡς μὲν τὸν Γ πρὸς τὸν Ε, οὕτως τὸν Η πρὸς τὸν θ, ὡς δὲ τὸν Δ πρὸς τὸν Ζ, οὕτως τὸν Θ πρὸς τὸν Κ. καὶ ὁ Δ τὸν Ε πολλαπλασιάσας τὸν Λ ποιείτω.
καὶ ἐπεὶ ὁ Δ τὸν μὲν Γ πολλαπλασιάσας τὸν Α πεποίηκεν, τὸν δὲ Ε πολλαπλασιάσας τὸν Λ πεποίηκεν, ἔστιν ἄρα ὡς ὁ Γ πρὸς τὸν Ε, οὕτως ὁ Α πρὸς τὸν Λ. ὡς δὲ ὁ Γ πρὸς τὸν Ε, οὕτως ὁ Η πρὸς τὸν Θ· καὶ ὡς ἄρα ὁ Η πρὸς τὸν Θ, οὕτως ὁ Α πρὸς τὸν Λ. πάλιν, ἐπεὶ ὁ Ε τὸν Δ πολλαπλασιάσας τὸν Λ πεποίηκεν, ἀλλὰ μὴν καὶ τὸν Ζ πολλαπλασιάσας τὸν Β πεποίηκεν, ἔστιν ἄρα ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Λ πρὸς τὸν Β. ἀλλʼ ὡς ὁ Δ πρὸς τὸν Ζ, οὕτως ὁ Θ πρὸς τὸν Κ· καὶ ὡς ἄρα ὁ Θ πρὸς τὸν Κ, οὕτως ὁ Λ πρὸς τὸν Β. ἐδείχθη δὲ καὶ ὡς ὁ Η πρὸς τὸν Θ, οὕτως ὁ Α πρὸς τὸν Λ· διʼ ἴσου ἄρα ἐστὶν ὡς ὁ Η πρὸς τὸν Κ, οὕτως ὁ Α πρὸς τὸν Β, ὁ δὲ Η πρὸς τὸν Κ λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν· καὶ ὁ Α ἄρα πρὸς τὸν Β λόγον ἔχει τὸν συγκείμενον ἐκ τῶν πλευρῶν· ὅπερ ἔδει δεῖξαι.
ἐὰν ὦσιν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, ὁ δὲ πρῶτος τὸν δεύτερον μὴ μετρῇ, οὐδὲ ἄλλος οὐδεὶς οὐδένα μετρήσει.
ἔστωσαν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον οἱ Α, Β, Γ, δ, Ε, ὁ δὲ Α τὸν Β μὴ μετρείτω· λέγω, ὅτι οὐδὲ ἄλλος οὐδεὶς οὐδένα μετρήσει.
ὅτι μὲν οὖν οἱ Α, Β, Γ, Δ, Ε ἑξῆς ἀλλήλους οὐ μετροῦσιν, φανερόν· οὐδὲ γὰρ ὁ Α τὸν Β μετρεῖ. λέγω δή, ὅτι οὐδὲ ἄλλος οὐδεὶς οὐδένα μετρήσει. εἰ γὰρ δυνατόν, μετρείτω ὁ Α τὸν Γ. καὶ ὅσοι εἰσὶν οἱ Α, Β, Γ, τοσοῦτοι εἰλήφθωσαν ἐλάχιστοι ἀριθμοὶ τῶν τὸν αὐτὸν λόγον ἐχόντων τοῖς Α, Β, Γ οἱ Ζ, Η, Θ. καὶ ἐπεὶ οἱ Ζ, Η, Θ ἐν τῷ αὐτῷ λόγῳ εἰσὶ τοῖς Α, Β, Γ, καί ἐστιν ἴσον τὸ πλῆθος τῶν Α, Β, Γ τῷ πλήθει τῶν Ζ, Η, Θ, διʼ ἴσου ἄρα ἐστὶν ὡς ὁ Α πρὸς τὸν Γ, οὕτως ὁ Ζ πρὸς τὸν Θ. καὶ ἐπεί ἐστιν ὡς ὁ Α πρὸς τὸν Β, οὕτως ὁ Ζ πρὸς τὸν Η, οὐ μετρεῖ δὲ ὁ Α τὸν Β, οὐ μετρεῖ ἄρα οὐδὲ ὁ Ζ τὸν Η· οὐκ ἄρα μονάς ἐστιν ὁ Ζ· ἡ γὰρ μονὰς πάντα ἀριθμὸν μετρεῖ. καί εἰσιν οἱ Ζ, Θ πρῶτοι πρὸς ἀλλήλους οὐδὲ ὁ Ζ ἄρα τὸν Θ μετρεῖ. καί ἐστιν ὡς ὁ Ζ πρὸς τὸν Θ, οὕτως ὁ Α πρὸς τὸν Γ· οὐδὲ ὁ Α ἄρα τὸν Γ μετρεῖ. ὁμοίως δὴ δείξομεν, ὅτι οὐδὲ ἄλλος οὐδεὶς οὐδένα μετρήσει· ὅπερ ἔδει δεῖξαι.
ἐὰν ὦσιν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, ὁ δὲ πρῶτος τὸν ἔσχατον μετρῇ, καὶ τὸν δεύτερον μετρήσει.
ἔστωσαν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον οἱ Α, Β, Γ, Δ, ὁ δὲ Α τὸν Δ μετρείτω· λέγω, ὅτι καὶ ὁ Α τὸν Β μετρεῖ.
εἰ γὰρ οὐ μετρεῖ ὁ Α τὸν Β, οὐδὲ ἄλλος οὐδεὶς οὐδένα μετρήσει· μετρεῖ δὲ ὁ Α τὸν Δ. μετρεῖ ἄρα καὶ ὁ Α τὸν Β· ὅπερ ἔδει δεῖξαι.