Elementa
Euclid
Euclid. Euclidis Opera omnia, Volume 1-5. Heiberg, Johan Ludvig, editor. Leipzig: Teubner, 1883-88.
οἱ τῷ αὐτῷ λόγῳ οἱ αὐτοὶ καὶ ἀλλήλοις εἰσὶν οἱ αὐτοί.
ἔστωσαν γὰρ ὡς μὲν τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, ὡς δὲ τὸ Γ πρὸς τὸ Δ, οὕτως τὸ Ε πρὸς τὸ Ζ· λέγω, ὅτι ἐστὶν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Ε πρὸς τὸ Ζ.
εἰλήφθω γὰρ τῶν Α, Γ, Ε ἰσάκις πολλαπλάσια τὰ Η, Θ, Κ, τῶν δὲ Β, Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Λ, Μ, Ν.
καὶ ἐπεί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, καὶ εἴληπται τῶν μὲν Α, Γ ἰσάκις πολλαπλάσια τὰ Η, Θ, τῶν δὲ Β, Δ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Λ, Μ, εἰ ἄρα ὑπερέχει τὸ Η τοῦ Λ, ὑπερέχει καὶ τὸ Θ τοῦ Μ, καὶ εἰ ἴσον ἐστίν, ἴσον, καὶ εἰ ἐλλείπει, ἐλλείπει. πάλιν, ἐπεί ἐστιν ὡς τὸ Γ πρὸς τὸ Δ, οὕτως τὸ Ε πρὸς τὸ Ζ, καὶ εἴληπται τῶν Γ, Ε ἰσάκις πολλαπλάσια τὰ Θ, Κ, τῶν δὲ Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Μ, Ν, εἰ ἄρα ὑπερέχει τὸ Θ τοῦ Μ, ὑπερέχει καὶ τὸ Κ τοῦ Ν, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον. ἀλλὰ εἰ ὑπερεῖχε τὸ Θ τοῦ Μ, ὑπερεῖχε καὶ τὸ Η τοῦ Λ, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον· ὥστε καὶ εἰ ὑπερέχει τὸ Η τοῦ Λ, ὑπερέχει καὶ τὸ Κ τοῦ Ν, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον. καί ἐστι τὰ μὲν Η, Κ τῶν Α, Ε ἰσάκις πολλαπλάσια, τὰ δὲ Λ, Ν τῶν Β, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια· ἔστιν ἄρα ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Ε πρὸς τὸ Ζ.
οἱ ἄρα τῷ αὐτῷ λόγῳ οἱ αὐτοὶ καὶ ἀλλήλοις εἰσὶν οἱ αὐτοί· ὅπερ ἔδει δεῖξαι.
ἐὰν ᾖ ὁποσαοῦν μεγέθη ἀνάλογον, ἔσται ὡς ἓν τῶν ἡγουμένων πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα.
ἔστωσαν ὁποσαοῦν μεγέθη ἀνάλογον τὰ Α, Β, Γ, Δ, ε, Ζ, ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, καὶ τὸ Ε πρὸς τὸ Ζ· λέγω, ὅτι ἐστὶν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὰ Α, Γ, Ε πρὸς τὰ Β, Δ, Ζ.
εἰλήφθω γὰρ τῶν μὲν Α, Γ, Ε ἰσάκις πολλαπλάσια τὰ Η, Θ, Κ, τῶν δὲ Β, Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Λ, Μ, Ν.
καὶ ἐπεί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, καὶ τὸ Ε πρὸς τὸ Ζ, καὶ εἴληπται τῶν μὲν Α, Γ, Ε ἰσάκις πολλαπλάσια τὰ Η, Θ, Κ τῶν δὲ Β, Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Λ, Μ, Ν, εἰ ἄρα ὑπερέχει τὸ Η τοῦ Λ, ὑπερέχει καὶ τὸ Θ τοῦ Μ, καὶ τὸ Κ τοῦ Ν, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον. ὥστε καὶ εἰ ὑπερέχει τὸ Η τοῦ Λ, ὑπερέχει καὶ τὰ Η, Θ, Κ τῶν Λ, Μ, Ν, καὶ εἰ ἴσον, ἴσα, καὶ εἰ ἔλαττον, ἐλάττονα. καί ἐστι τὸ μὲν Η καὶ τὰ Η, Θ, Κ τοῦ Α καὶ τῶν Α, Γ, Ε ἰσάκις πολλαπλάσια, ἐπειδήπερ ἐὰν ᾖ ὁποσαοῦν μεγέθη ὁποσωνοῦν μεγεθῶν ἴσων τὸ πλῆθος ἕκαστον ἑκάστου ἰσάκις πολλαπλάσιον, ὁσαπλάσιόν ἐστιν ἓν τῶν μεγεθῶν ἑνός, τοσαυταπλάσια ἔσται καὶ τὰ πάντα τῶν πάντων. διὰ τὰ αὐτὰ δὴ καὶ τὸ Λ καὶ τὰ Λ, Μ, Ν τοῦ Β καὶ τῶν β, Δ, Ζ ἰσάκις ἐστὶ πολλαπλάσια· ἔστιν ἄρα ὡς τὸ Α πρὸς τὸ Β, οὕτως τὰ Α, Γ, Ε πρὸς τὰ Β, Δ, Ζ.
ἐὰν ἄρα ᾖ ὁποσαοῦν μεγέθη ἀνάλογον, ἔσται ὡς ἓν τῶν ἡγουμένων πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα· ὅπερ ἔδει δεῖξαι.
ἐὰν πρῶτον πρὸς δεύτερον τὸν αὐτὸν ἔχῃ λόγον καὶ τρίτον πρὸς τέταρτον, τρίτον δὲ πρὸς τέταρτον μείζονα λόγον ἔχῃ ἢ πέμπτον πρὸς ἕκτον, καὶ πρῶτον πρὸς δεύτερον μείζονα λόγον ἕξει ἢ πέμπτον πρὸς ἕκτον.
πρῶτον γὰρ τὸ Α πρὸς δεύτερον τὸ Β τὸν αὐτὸν ἐχέτω λόγον καὶ τρίτον τὸ Γ πρὸς τέταρτον τὸ Δ, τρίτον δὲ τὸ Γ πρὸς τέταρτον τὸ Δ μείζονα λόγον ἐχέτω ἢ πέμπτον τὸ Ε πρὸς ἕκτον τὸ Ζ. λέγω, ὅτι καὶ πρῶτον τὸ Α πρὸς δεύτερον τὸ Β μείζονα λόγον ἕξει ἤπερ πέμπτον τὸ Ε πρὸς ἕκτον τὸ Ζ.
ἐπεὶ γὰρ ἔστι τινὰ τῶν μὲν Γ, Ε ἰσάκις πολλαπλάσια, τῶν δὲ Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια, καὶ τὸ μὲν τοῦ Γ πολλαπλάσιον τοῦ τοῦ Δ πολλαπλασίου ὑπερέχει, τὸ δὲ τοῦ Ε πολλαπλάσιον τοῦ τοῦ Ζ πολλαπλασίου οὐχ ὑπερέχει, εἰλήφθω, καὶ ἔστω τῶν μὲν Γ, Ε ἰσάκις πολλαπλάσια τὰ Η, Θ, τῶν δὲ Δ, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Κ, Λ, ὥστε τὸ μὲν Η τοῦ Κ ὑπερέχειν, τὸ δὲ Θ τοῦ Λ μὴ ὑπερέχειν· καὶ ὁσαπλάσιον μέν ἐστι τὸ Η τοῦ Γ, τοσαυταπλάσιον ἔστω καὶ τὸ Μ τοῦ Α, ὁσαπλάσιον δὲ τὸ Κ τοῦ Δ, τοσαυταπλάσιον ἔστω καὶ τὸ Ν τοῦ Β.
καὶ ἐπεί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, καὶ εἴληπται τῶν μὲν Α, Γ ἰσάκις πολλαπλάσια τὰ Μ, Η, τῶν δὲ Β, Δ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια τὰ Ν, Κ, εἰ ἄρα ὑπερέχει τὸ Μ τοῦ Ν, ὑπερέχει καὶ τὸ Η τοῦ Κ, καὶ εἰ ἴσον, ἴσον, καὶ εἰ ἔλαττον, ἔλαττον. ὑπερέχει δὲ τὸ Η τοῦ Κ· ὑπερέχει ἄρα καὶ τὸ Μ τοῦ Ν. τὸ δὲ Θ τοῦ Λ οὐχ ὑπερέχει· καί ἐστι τὰ μὲν Μ, Θ τῶν Α, Ε ἰσάκις πολλαπλάσια, τὰ δὲ Ν, Λ τῶν Β, Ζ ἄλλα, ἃ ἔτυχεν, ἰσάκις πολλαπλάσια· τὸ ἄρα Α πρὸς τὸ Β μείζονα λόγον ἔχει ἤπερ τὸ Ε πρὸς τὸ Ζ.
ἐὰν ἄρα πρῶτον πρὸς δεύτερον τὸν αὐτὸν ἔχῃ λόγον καὶ τρίτον πρὸς τέταρτον, τρίτον δὲ πρὸς τέταρτον μείζονα λόγον ἔχῃ ἢ πέμπτον πρὸς ἕκτον, καὶ πρῶτον πρὸς δεύτερον μείζονα λόγον ἕξει ἢ πέμπτον πρὸς ἕκτον· ὅπερ ἔδει δεῖξαι.
ἐὰν πρῶτον πρὸς δεύτερον τὸν αὐτὸν ἔχῃ λόγον καὶ τρίτον πρὸς τέταρτον, τὸ δὲ πρῶτον τοῦ τρίτου μεῖζον ᾖ, καὶ τὸ δεύτερον τοῦ τετάρτου μεῖζον ἔσται, κἂν ἴσον, ἴσον, κἂν ἔλαττον, ἔλαττον.
πρῶτον γὰρ τὸ Α πρὸς δεύτερον τὸ Β τὸν αὐτὸν ἐχέτω λόγον καὶ τρίτον τὸ Γ πρὸς τέταρτον τὸ Δ, μεῖζον δὲ ἔστω τὸ Α τοῦ Γ· λέγω, ὅτι καὶ τὸ Β τοῦ Δ μεῖζόν ἐστιν.
ἐπεὶ γὰρ τὸ Α τοῦ Γ μεῖζόν ἐστιν, ἄλλο δέ, ὃ ἔτυχεν, μέγεθος τὸ Β, τὸ Α ἄρα πρὸς τὸ Β μείζονα λόγον ἔχει ἤπερ τὸ Γ πρὸς τὸ Β. ὡς δὲ τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ· καὶ τὸ Γ ἄρα πρὸς τὸ Δ μείζονα λόγον ἔχει ἤπερ τὸ Γ πρὸς τὸ Β. πρὸς ὃ δὲ τὸ αὐτὸ μείζονα λόγον ἔχει, ἐκεῖνο ἔλασσόν ἐστιν· ἔλασσον ἄρα τὸ Δ τοῦ Β· ὥστε μεῖζόν ἐστι τὸ Β τοῦ Δ.
ὁμοίως δὴ δείξομεν, ὅτι κἂν ἴσον ᾖ τὸ Α τῷ Γ, ἴσον ἔσται καὶ τὸ Β τῷ Δ, κἂν ἔλασσον ᾖ τὸ Α τοῦ Γ, ἔλασσον ἔσται καὶ τὸ Β τοῦ Δ.
ἐὰν ἄρα πρῶτον πρὸς δεύτερον τὸν αὐτὸν ἔχῃ λόγον καὶ τρίτον πρὸς τέταρτον, τὸ δὲ πρῶτον τοῦ τρίτου μεῖζον ᾖ, καὶ τὸ δεύτερον τοῦ τετάρτου μεῖζον ἔσται, κἂν ἴσον, ἴσον, κἂν ἔλαττον, ἔλαττον· ὅπερ ἔδει δεῖξαι.
τὰ μέρη τοῖς ὡσαύτως πολλαπλασίοις τὸν αὐτὸν ἔχει λόγον ληφθέντα κατάλληλα.
ἔστω γὰρ ἰσάκις πολλαπλάσιον τὸ ΑΒ τοῦ Γ καὶ τὸ ΔΕ τοῦ Ζ· λέγω, ὅτι ἐστὶν ὡς τὸ Γ πρὸς τὸ Ζ, οὕτως τὸ ΑΒ πρὸς τὸ ΔΕ.
ἐπεὶ γὰρ ἰσάκις ἐστὶ πολλαπλάσιον τὸ ΑΒ τοῦ Γ καὶ τὸ ΔΕ τοῦ Ζ, ὅσα ἄρα ἐστὶν ἐν τῷ ΑΒ μεγέθη ἴσα τῷ Γ, τοσαῦτα καὶ ἐν τῷ ΔΕ ἴσα τῷ Ζ. διῃρήσθω τὸ μὲν ΑΒ εἰς τὰ τῷ Γ ἴσα τὰ ΑΗ, ΗΘ, ΘΒ, τὸ δὲ ΔΕ εἰς τὰ τῷ Ζ ἴσα τὰ ΔΚ, ΚΛ, ΛΕ· ἔσται δὴ ἴσον τὸ πλῆθος τῶν ΑΗ, ΗΘ, ΘΒ τῷ πλήθει τῶν ΔΚ, ΚΛ, ΛΕ. καὶ ἐπεὶ ἴσα ἐστὶ τὰ ΑΗ, ΗΘ, ΘΒ ἀλλήλοις, ἔστι δὲ καὶ τὰ ΔΚ, ΚΛ, ΛΕ ἴσα ἀλλήλοις, ἔστιν ἄρα ὡς τὸ ΑΗ πρὸς τὸ ΔΚ, οὕτως τὸ ΗΘ πρὸς τὸ ΚΛ, καὶ τὸ ΘΒ πρὸς τὸ ΛΕ. ἔσται ἄρα καὶ ὡς ἓν τῶν ἡγουμένων πρὸς ἓν τῶν ἑπομένων, οὕτως ἅπαντα τὰ ἡγούμενα πρὸς ἅπαντα τὰ ἑπόμενα· ἔστιν ἄρα ὡς τὸ ΑΗ πρὸς τὸ ΔΚ, οὕτως τὸ ΑΒ πρὸς τὸ ΔΕ. ἴσον δὲ τὸ μὲν ΑΗ τῷ Γ, τὸ δὲ ΔΚ τῷ Ζ· ἔστιν ἄρα ὡς τὸ Γ πρὸς τὸ Ζ οὕτως τὸ ΑΒ πρὸς τὸ ΔΕ.
τὰ ἄρα μέρη τοῖς ὡσαύτως πολλαπλασίοις τὸν αὐτὸν ἔχει λόγον ληφθέντα κατάλληλα· ὅπερ ἔδει δεῖξαι.