Elementa
Euclid
Euclid. Euclidis Opera omnia, Volume 1-5. Heiberg, Johan Ludvig, editor. Leipzig: Teubner, 1883-88.
αἱ τῇ αὐτῇ εὐθείᾳ παράλληλοι καὶ μὴ οὖσαι αὐτῇ ἐν τῷ αὐτῷ ἐπιπέδῳ καὶ ἀλλήλαις εἰσὶ παράλληλοι.
ἔστω γὰρ ἑκατέρα τῶν ΑΒ, ΓΔ τῇ ΕΖ παράλληλος μὴ οὖσαι αὐτῇ ἐν τῷ αὐτῷ ἐπιπέδῳ· λέγω, ὅτι παράλληλός ἐστιν ἡ ΑΒ τῇ ΓΔ.
εἰλήφθω γὰρ ἐπὶ τῆς ΕΖ τυχὸν σημεῖον τὸ Η, καὶ ἀπʼ αὐτοῦ τῇ ΕΖ ἐν μὲν τῷ διὰ τῶν ΕΖ, ΑΒ ἐπιπέδῳ πρὸς ὀρθὰς ἤχθω ἡ ΗΘ, ἐν δὲ τῷ διὰ τῶν ΖΕ, ΓΔ τῇ ΕΖ πάλιν πρὸς ὀρθὰς ἤχθω ἡ ΗΚ. καὶ ἐπεὶ ἡ ΕΖ πρὸς ἑκατέραν τῶν ΗΘ, ΗΚ ὀρθή ἐστιν, ἡ ΕΖ ἄρα καὶ τῷ διὰ τῶν ΗΘ, ΗΚ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. καί ἐστιν ἡ ΕΖ τῇ ΑΒ παράλληλος· καὶ ἡ ΑΒ ἄρα τῷ διὰ τῶν ΘΗΚ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΓΔ τῷ διὰ τῶν ΘΗΚ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν· ἑκατέρα ἄρα τῶν ΑΒ, ΓΔ τῷ διὰ τῶν ΘΗΚ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. ἐὰν δὲ δύο εὐθεῖαι τῷ αὐτῷ ἐπιπέδῳ πρὸς ὀρθὰς ὦσιν, παράλληλοί εἰσιν αἱ εὐθεῖαι· παράλληλος ἄρα ἐστὶν ἡ ΑΒ τῇ ΓΔ· ὅπερ ἔδει δεῖξαι.
ἐὰν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων παρὰ δύο εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ, ἴσας γωνίας περιέξουσιν.
δύο γὰρ εὐθεῖαι αἱ ΑΒ, ΒΓ ἁπτόμεναι ἀλλήλων παρὰ δύο εὐθείας τὰς ΔΕ, ΕΖ ἁπτομένας ἀλλήλων ἔστωσαν μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ· λέγω, ὅτι ἴση ἐστὶν ἡ ὑπὸ ΑΒΓ γωνία τῇ ὑπὸ ΔΕΖ.
Ἀπειλήφθωσαν γὰρ αἱ ΒΑ, ΒΓ, ΕΔ, ΕΖ ἴσαι ἀλλήλαις, καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΓΖ, ΒΕ, ΑΓ, ΔΖ. καὶ ἐπεὶ ἡ ΒΑ τῇ ΕΔ ἴση ἐστὶ καὶ παράλληλος, καὶ ἡ ΑΔ ἄρα τῇ ΒΕ ἴση ἐστὶ καὶ παράλληλος. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΓΖ τῇ ΒΕ ἴση ἐστὶ καὶ παράλληλος· ἑκατέρα ἄρα τῶν ΑΔ, ΓΖ τῇ ΒΕ ἴση ἐστὶ καὶ παράλληλος. αἱ δὲ τῇ αὐτῇ εὐθείᾳ παράλληλοι καὶ μὴ οὖσαι αὐτῇ ἐν τῷ αὐτῷ ἐπιπέδῳ καὶ ἀλλήλαις εἰσὶ παράλληλοι· παράλληλος ἄρα ἐστὶν ἡ ΑΔ τῇ ΓΖ καὶ ἴση. καὶ ἐπιζευγνύουσιν αὐτὰς αἱ ΑΓ, ΔΖ· καὶ ἡ ΑΓ ἄρα τῇ ΔΖ ἴση ἐστὶ καὶ παράλληλος. καὶ ἐπεὶ δύο αἱ ΑΒ, ΒΓ δυσὶ ταῖς ΔΕ, ΕΖ ἴσαι εἰσίν, καὶ βάσις ἡ ΑΓ βάσει τῇ ΔΖ ἴση, γωνία ἄρα ἡ ὑπὸ ΑΒΓ γωνίᾳ τῇ ὑπὸ ΔΕΖ ἐστιν ἴση.
ἐὰν ἄρα δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων παρὰ δύο εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ, ἴσας γωνίας περιέξουσιν· ὅπερ ἔδει δεῖξαι.
ἀπὸ τοῦ δοθέντος σημείου μετεώρου ἐπὶ τὸ δοθὲν ἐπίπεδον κάθετον εὐθεῖαν γραμμὴν ἀγαγεῖν.
ἔστω τὸ μὲν δοθὲν σημεῖον μετέωρον τὸ Α, τὸ δὲ δοθὲν ἐπίπεδον τὸ ὑποκείμενον· δεῖ δὴ ἀπὸ τοῦ Α σημείου ἐπὶ τὸ ὑποκείμενον ἐπίπεδον κάθετον εὐθεῖαν γραμμὴν ἀγαγεῖν.
διήχθω γάρ τις ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ εὐθεῖα, ὡς ἔτυχεν, ἡ ΒΓ, καὶ ἤχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὴν ΒΓ κάθετος ἡ ΑΔ. εἰ μὲν οὖν ἡ ΑΔ κάθετός ἐστι καὶ ἐπὶ τὸ ὑποκείμενον ἐπίπεδον, γεγονὸς ἂν εἴη τὸ ἐπιταχθέν. εἰ δὲ οὔ, ἤχθω ἀπὸ τοῦ Δ σημείου τῇ ΒΓ ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθὰς ἡ ΔΕ, καὶ ἤχθω ἀπὸ τοῦ Α ἐπὶ τὴν ΔΕ κάθετος ἡ ΑΖ, καὶ διὰ τοῦ Ζ σημείου τῇ ΒΓ παράλληλος ἤχθω ἡ ΗΘ.
καὶ ἐπεὶ ἡ ΒΓ ἑκατέρᾳ τῶν ΔΑ, ΔΕ πρὸς ὀρθάς ἐστιν, ἡ ΒΓ ἄρα καὶ τῷ διὰ τῶν ΕΔΑ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. καί ἐστιν αὐτῇ παράλληλος ἡ ΗΘ· ἐὰν δὲ ὦσι δύο εὐθεῖαι παράλληλοι, ἡ δὲ μία αὐτῶν ἐπιπέδῳ τινὶ πρὸς ὀρθὰς ᾖ, καὶ ἡ λοιπὴ τῷ αὐτῷ ἐπιπέδῳ πρὸς ὀρθὰς ἔσται· καὶ ἡ ΗΘ ἄρα τῷ διὰ τῶν ΕΔ, ΔΑ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. καὶ πρὸς πάσας ἄρα τὰς ἁπτομένας αὐτῆς εὐθείας καὶ οὔσας ἐν τῷ διὰ τῶν ΕΔ, ΔΑ ἐπιπέδῳ ὀρθή ἐστιν ἡ ΗΘ. ἅπτεται δὲ αὐτῆς ἡ ΑΖ οὖσα ἐν τῷ διὰ τῶν ΕΔ, ΔΑ ἐπιπέδῳ· ἡ ΗΘ ἄρα ὀρθή ἐστι πρὸς τὴν ΖΑ· ὥστε καὶ ἡ ΖΑ ὀρθή ἐστι πρὸς τὴν ΘΗ. ἔστι δὲ ἡ ΑΖ καὶ πρὸς τὴν ΔΕ ὀρθή· ἡ ΑΖ ἄρα πρὸς ἑκατέραν τῶν ΗΘ, ΔΕ ὀρθή ἐστιν. ἐὰν δὲ εὐθεῖα δυσὶν εὐθείαις τεμνούσαις ἀλλήλας ἐπὶ τῆς τομῆς πρὸς ὀρθὰς ἐπισταθῇ, καὶ τῷ διʼ αὐτῶν ἐπιπέδῳ πρὸς ὀρθὰς ἔσται· ἡ ΖΑ ἄρα τῷ διὰ τῶν ΕΔ, ΗΘ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. τὸ δὲ διὰ τῶν ΕΔ, ΗΘ ἐπίπεδόν ἐστι τὸ ὑποκείμενον· ἡ ΑΖ ἄρα τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν.
ἀπὸ τοῦ ἄρα δοθέντος σημείου μετεώρου τοῦ Α ἐπὶ τὸ ὑποκείμενον ἐπίπεδον κάθετος εὐθεῖα γραμμὴ ἦκται ἡ ΑΖ· ὅπερ ἔδει ποιῆσαι.
τῷ δοθέντι ἐπιπέδῳ ἀπὸ τοῦ πρὸς αὐτῷ δοθέντος σημείου πρὸς ὀρθὰς εὐθεῖαν γραμμὴν ἀναστῆσαι.
ἔστω τὸ μὲν δοθὲν ἐπίπεδον τὸ ὑποκείμενον, τὸ δὲ πρὸς αὐτῷ σημεῖον τὸ Α· δεῖ δὴ ἀπὸ τοῦ Α σημείου τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθὰς εὐθεῖαν γραμμὴν ἀναστῆσαι.
νενοήσθω τι σημεῖον μετέωρον τὸ Β, καὶ ἀπὸ τοῦ Β ἐπὶ τὸ ὑποκείμενον ἐπίπεδον κάθετος ἤχθω ἡ ΒΓ, καὶ διὰ τοῦ Α σημείου τῇ ΒΓ παράλληλος ἤχθω ἡ ΑΔ.
ἐπεὶ οὖν δύο εὐθεῖαι παράλληλοί εἰσιν αἱ ΑΔ, ΓΒ, ἡ δὲ μία αὐτῶν ἡ ΒΓ τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν, καὶ ἡ λοιπὴ ἄρα ἡ ΑΔ τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν.
τῷ ἄρα δοθέντι ἐπιπέδῳ ἀπὸ τοῦ πρὸς αὐτῷ σημείου τοῦ Α πρὸς ὀρθὰς ἀνέσταται ἡ ΑΔ· ὅπερ ἔδει ποιῆσαι.
ἀπὸ τοῦ αὐτοῦ σημείου τῷ αὐτῷ ἐπιπέδῳ δύο εὐθεῖαι πρὸς ὀρθὰς οὐκ ἀναστήσονται ἐπὶ τὰ αὐτὰ μέρη.
εἰ γὰρ δυνατόν, ἀπὸ τοῦ αὐτοῦ σημείου τοῦ Α τῷ ὑποκειμένῳ ἐπιπέδῳ δύο εὐθεῖαι αἱ ΑΒ, ΑΓ πρὸς ὀρθὰς ἀνεστάτωσαν ἐπὶ τὰ αὐτὰ μέρη, καὶ διήχθω τὸ διὰ τῶν ΒΑ, ΑΓ ἐπίπεδον· τομὴν δὴ ποιήσει διὰ τοῦ Α ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ εὐθεῖαν. ποιείτω τὴν ΔΑΕ· αἱ ἄρα ΑΒ, ΑΓ, ΔΑΕ εὐθεῖαι ἐν ἑνί εἰσιν ἐπιπέδῳ. καὶ ἐπεὶ ἡ ΓΑ τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν, καὶ πρὸς πάσας ἄρα τὰς ἁπτομένας αὐτῆς εὐθείας καὶ οὔσας ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας. ἅπτεται δὲ αὐτῆς ἡ ΔΑΕ οὖσα ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ· ἡ ἄρα ὑπὸ ΓΑΕ γωνία ὀρθή ἐστιν. διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΕ ὀρθή ἐστιν· ἴση ἄρα ἡ ὑπὸ ΓΑΕ τῇ ὑπὸ ΒΑΕ. καί εἰσιν ἐν ἑνὶ ἐπιπέδῳ· ὅπερ ἐστὶν ἀδύνατον.
οὐκ ἄρα ἀπὸ τοῦ αὐτοῦ σημείου τῷ αὐτῷ ἐπιπέδῳ δύο εὐθεῖαι πρὸς ὀρθὰς ἀνασταθήσονται ἐπὶ τὰ αὐτὰ μέρη· ὅπερ ἔδει δεῖξαι.
πρὸς ἃ ἐπίπεδα ἡ αὐτὴ εὐθεῖα ὀρθή ἐστιν, παράλληλα ἔσται τὰ ἐπίπεδα.
εὐθεῖα γάρ τις ἡ ΑΒ πρὸς ἑκάτερον τῶν ΓΔ, ΕΖ ἐπιπέδων πρὸς ὀρθὰς ἔστω· λέγω, ὅτι παράλληλά ἐστι τὰ ἐπίπεδα.
εἰ γὰρ μή, ἐκβαλλόμενα συμπεσοῦνται. συμπιπτέτωσαν· ποιήσουσι δὴ κοινὴν τομὴν εὐθεῖαν. ποιείτωσαν τὴν ΗΘ, καὶ εἰλήφθω ἐπὶ τῆς ΗΘ τυχὸν σημεῖον τὸ Κ, καὶ ἐπεζεύχθωσαν αἱ ΑΚ, ΒΚ. καὶ ἐπεὶ ἡ ΑΒ ὀρθή ἐστι πρὸς τὸ ΕΖ ἐπίπεδον, καὶ πρὸς τὴν ΒΚ ἄρα εὐθεῖαν οὖσαν ἐν τῷ ΕΖ ἐκβληθέντι ἐπιπέδῳ ὀρθή ἐστιν ἡ ΑΒ· ἡ ἄρα ὑπὸ ΑΒΚ γωνία ὀρθή ἐστιν. διὰ τὰ αὐτὰ δὴ καὶ ἡ ὑπὸ ΒΑΚ ὀρθή ἐστιν. τριγώνου δὴ τοῦ ΑΒΚ αἱ δύο γωνίαι αἱ ὑπὸ ΑΒΚ, ΒΑΚ δυσὶν ὀρθαῖς εἰσιν ἴσαι· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τὰ ΓΔ, ΕΖ ἐπίπεδα ἐκβαλλόμενα συμπεσοῦνται· παράλληλα ἄρα ἐστὶ τὰ ΓΔ, ΕΖ ἐπίπεδα.
πρὸς ἃ ἐπίπεδα ἄρα ἡ αὐτὴ εὐθεῖα ὀρθή ἐστιν, παράλληλά ἐστι τὰ ἐπίπεδα· ὅπερ ἔδει δεῖξαι.
ἐὰν δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων παρὰ δύο εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι, παράλληλά ἐστι τὰ διʼ αὐτῶν ἐπίπεδα.
δύο γὰρ εὐθεῖαι ἁπτόμεναι ἀλλήλων αἱ ΑΒ, ΒΓ παρὰ δύο εὐθείας ἁπτομένας ἀλλήλων τὰς ΔΕ, ΕΖ ἔστωσαν μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι· λέγω, ὅτι ἐκβαλλόμενα τὰ διὰ τῶν ΑΒ, ΒΓ, ΔΕ, ΕΖ ἐπίπεδα οὐ συμπεσεῖται ἀλλήλοις.
ἤχθω γὰρ ἀπὸ τοῦ Β σημείου ἐπὶ τὸ διὰ τῶν ΔΕ, ΕΖ ἐπίπεδον κάθετος ἡ ΒΗ καὶ συμβαλλέτω τῷ ἐπιπέδῳ κατὰ τὸ Η σημεῖον, καὶ διὰ τοῦ Η τῇ μὲν ΕΔ παράλληλος ἤχθω ἡ ΗΘ, τῇ δὲ ΕΖ ἡ ΗΚ. καὶ ἐπεὶ ἡ ΒΗ ὀρθή ἐστι πρὸς τὸ διὰ τῶν ΔΕ, ΕΖ ἐπίπεδον, καὶ πρὸς πάσας ἄρα τὰς ἁπτομένας αὐτῆς εὐθείας καὶ οὔσας ἐν τῷ διὰ τῶν ΔΕ, ΕΖ ἐπιπέδῳ ὀρθὰς ποιήσει γωνίας. ἅπτεται δὲ αὐτῆς ἑκατέρα τῶν ΗΘ, ΗΚ οὖσα ἐν τῷ διὰ τῶν ΔΕ, ΕΖ ἐπιπέδῳ· ὀρθὴ ἄρα ἐστὶν ἑκατέρα τῶν ὑπὸ ΒΗΘ, ΒΗΚ γωνιῶν. καὶ ἐπεὶ παράλληλός ἐστιν ἡ ΒΑ τῇ ΗΘ, αἱ ἄρα ὑπὸ ΗΒΑ, ΒΗΘ γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν. ὀρθὴ δὲ ἡ ὑπὸ ΒΗΘ· ὀρθὴ ἄρα καὶ ἡ ὑπὸ ΗΒΑ· ἡ ΗΒ ἄρα τῇ ΒΑ πρὸς ὀρθάς ἐστιν. διὰ τὰ αὐτὰ δὴ ἡ ΗΒ καὶ τῇ ΒΓ ἐστι πρὸς ὀρθάς. ἐπεὶ οὖν εὐθεῖα ἡ ΗΒ δυσὶν εὐθείαις ταῖς ΒΑ, ΒΓ τεμνούσαις ἀλλήλας πρὸς ὀρθὰς ἐφέστηκεν, ἡ ΗΒ ἄρα καὶ τῷ διὰ τῶν ΒΑ, ΒΓ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. διὰ τὰ αὐτὰ δὴ ἡ ΒΗ καὶ τῷ διὰ τῶν ΗΘ, ΗΚ ἐπιπέδῳ πρὸς ὀρθάς ἐστιν. τὸ δὲ διὰ τῶν ΗΘ, ΗΚ ἐπίπεδόν ἐστι τὸ διὰ τῶν ΔΕ, ΕΖ· ἡ ΒΗ ἄρα τῷ διὰ τῶν ΔΕ, ΕΖ ἐπιπέδῳ ἐστὶ πρὸς ὀρθάς. ἐδείχθη δὲ ἡ ΗΒ καὶ τῷ διὰ τῶν ΑΒ, ΒΓ ἐπιπέδῳ πρὸς ὀρθάς. πρὸς ἃ δὲ ἐπίπεδα ἡ αὐτὴ εὐθεῖα ὀρθή ἐστιν, παράλληλά ἐστι τὰ ἐπίπεδα· παράλληλον ἄρα ἐστὶ τὸ διὰ τῶν ΑΒ, ΒΓ ἐπίπεδον τῷ διὰ τῶν ΔΕ, ΕΖ.
ἐὰν ἄρα δύο εὐθεῖαι ἁπτόμεναι ἀλλήλων παρὰ δύο εὐθείας ἁπτομένας ἀλλήλων ὦσι μὴ ἐν τῷ αὐτῷ ἐπιπέδῳ, παράλληλά ἐστι τὰ διʼ αὐτῶν ἐπίπεδα· ὅπερ ἔδει δεῖξαι.
ἐὰν δύο ἐπίπεδα παράλληλα ὑπὸ ἐπιπέδου τινὸς τέμνηται, αἱ κοιναὶ αὐτῶν τομαὶ παράλληλοί εἰσιν.
δύο γὰρ ἐπίπεδα παράλληλα τὰ ΑΒ, ΓΔ ὑπὸ ἐπιπέδου τοῦ ΕΖΗΘ τεμνέσθω, κοιναὶ δὲ αὐτῶν τομαὶ ἔστωσαν αἱ ΕΖ, ΗΘ· λέγω, ὅτι παράλληλός ἐστιν ἡ ΕΖ τῇ ΗΘ.
εἰ γὰρ μή, ἐκβαλλόμεναι αἱ ΕΖ, ΗΘ ἤτοι ἐπὶ τὰ Ζ, Θ μέρη ἢ ἐπὶ τὰ Ε, Η συμπεσοῦνται. ἐκβεβλήσθωσαν ὡς ἐπὶ τὰ Ζ, Θ μέρη καὶ συμπιπτέτωσαν πρότερον κατὰ τὸ Κ. καὶ ἐπεὶ ἡ ΕΖΚ ἐν τῷ ΑΒ ἐστιν ἐπιπέδῳ, καὶ πάντα ἄρα τὰ ἐπὶ τῆς ΕΖΚ σημεῖα ἐν τῷ ΑΒ ἐστιν ἐπιπέδῳ. ἓν δὲ τῶν ἐπὶ τῆς ΕΖΚ εὐθείας σημείων ἐστὶ τὸ Κ· τὸ Κ ἄρα ἐν τῷ ΑΒ ἐστιν ἐπιπέδῳ. διὰ τὰ αὐτὰ δὴ τὸ Κ καὶ ἐν τῷ ΓΔ ἐστιν ἐπιπέδῳ· τὰ ΑΒ, ΓΔ ἄρα ἐπίπεδα ἐκβαλλόμενα συμπεσοῦνται. οὐ συμπίπτουσι δὲ διὰ τὸ παράλληλα ὑποκεῖσθαι· οὐκ ἄρα αἱ ΕΖ, ΗΘ εὐθεῖαι ἐκβαλλόμεναι ἐπὶ τὰ Ζ, Θ μέρη συμπεσοῦνται. ὁμοίως δὴ δείξομεν, ὅτι αἱ ΕΖ, ΗΘ εὐθεῖαι οὐδὲ ἐπὶ τὰ Ε, Η μέρη ἐκβαλλόμεναι συμπεσοῦνται. αἱ δὲ ἐπὶ μηδέτερα τὰ μέρη συμπίπτουσαι παράλληλοί εἰσιν. παράλληλος ἄρα ἐστὶν ἡ ΕΖ τῇ ΗΘ.
ἐὰν ἄρα δύο ἐπίπεδα παράλληλα ὑπὸ ἐπιπέδου τινὸς τέμνηται, αἱ κοιναὶ αὐτῶν τομαὶ παράλληλοί εἰσιν· ὅπερ ἔδει δεῖξαι.