Mechanica

Aristotle

Aristotle. Aristotelis Opera, Volume 6. Bekker, Immanuel, editor. Oxford: Oxford University Press, 1837.

Διὰ τί, ὅσῳ ἂν ἡ κεραία ἀνωτέρα ᾖ, θᾶττον πλεῖ τὰπλοῖα τῷ αὐτῷ ἱστίῳ καὶ τῷ αὐτῷ πνεύματι; Ἣ διότι γίνεται ὁ μὲν στὸς μοχλός, ὑπομόχλιον δὲ τὸ ἑδώλιον ἐν ᾧ ἐμπέπηγεν, ὃ δὲδεῖ κινεῖν βάρος, τὸ πλοῖον, τὸ δὲ κινοῦν τὸ ἐν τῷ ἱστίῳ πνεῦμα. Εἰ δ’ ὅσῳ αν πορρώτερον ᾗ τὸ ὑπομόχλιον, ῥᾷον κινεῖ καὶ θᾶττον ἡ αὐτὴ δύναμις τὸ αὐτὸ βάρος, ἡ οὖν κεραία ἀνώτερον ἀγομένη καὶ τὸ ἱστίον πορρώτερον ποιεῖ τοῦ ἑδωλίου ὑπομοχλίου ὄντος.

Διὰ τί, ὅταν ἐξ οὑρίας βούλωνται διαδραμεῖν μὴ οὐρίου τοῦ πνεύματος ὄντος, τὸ μὲν πρὸς τὸν κυβερνήτην τοῦ ἰστίου μέρος στέλλονται, τὸ δὲ πρὸς τὴν πρῷραν ποδιαῖον ποιησάμενοι ἐφιᾶσιν; Ἢ διότιἀντισπᾶν τὸ πηδάλιον πολλῷ μὲν ὄντι τῷ πνεύματι οὐ δύναται, ὀλίγῳ δέ, ὃ ὑποστέλλονται.

Προάγει μὲν οὖν τὸ πνεῦμα, εἰς οὔριον δὲ καθίστησι τὸ πηδάλιον, ἀντισπῶν καὶ μοχλεῦον, τὴν θάλατταν. Ἄμα δὲ καὶ οἱ ναῦται μάχονται τῷ πνεύματι· ἀνακλίνουσι γὰρ ἐπὶ τὸ ἐναντίον ἑαυτούς. Διὰ τί τὰ στρογγύλα καὶ περιφερῆ τῶν σχημάτων εὐκινητότερα; Τριχῶς δὲ ἐνδέχεται τὸν κύκλον κυλισθῆναι· ἢ γὰρ κατὰ τὴν ἁψῖδα, συμμεταβάλλοντος τοῦ κέντρου,

ὥσπερ ὁ τροχὸς ὁ τῆς ἁμάξης κυλίεται· ἢ περὶ τὸ κέντρον μόνον, ὥσπερ αἱ τροχιλέαι, τοῦ κέντρου μένοντος· ἢπαρὰ τὸ ἐπίπεδον, τοῦ κέντρου μένοντος, ὥσπερ ὁκεραμεικὸς τροχὸς κυλίνδεται.

Εἰ μὲνδὴ τάχιστα τὰ τοιαῦτα, διά τε τὸ μικρῷ ἄπτεσθαι τοῦ ἐπιπέδου, ὥσπερ ὁ κύκλος κατὰ στιγμήν, καὶ διὰ τὸ μὴ προσκόπτειν· ἀφέστηκε γὰρ τῆς γῆς ἡ γωνία. Καὶ ἔτι ᾦ ἂν ἀπαντήσῃ σώματι, πάλιν τούτου κατὰ μικρὸν ἅπτεται. Εἰ δ’ εὐθύγραμμον ἦν, τῇ εὐθείᾳ ἐπὶ πολὺ ἥπτετο ἂν τοῦ ἐπιπέδου.

Ἕτι ᾖ ῥέπει ἐπὶ τὸ βάρος, ταύτῃ κινεῖ ὁ κινῶν. Ὄταν μὲν γὰρ πρὸς ὄρθιον ἡ διάμετρος ᾖ τοῦ κύκλου τῷ ἐπιπέδῳ, ἁπτομένου τοῦ κύκλου κατὰ στιγμνὴν τοῦ ἐπιπέδου, ἴσὸν τὸ βάρος ἐπ’ ἀμφότερα διαλαμβάνει ἡ διάμετρος· ὅταν δὲ κινῆται, εὐθύς πλέον ἐφ’ ᾧ κινεῖται, ὥσπερ ῥέπον.

Ἐντεῦθεν εὐκινητότερον τῷ ὠθοῦντι εἰς τοὔμπροσθεν· ἐφ’ ὃ γὰρ ῥέπει ἕκαστον, εὐκίνητόν ἐστιν, εἴπερ καὶτὸ ἐπὶ τὸ ἐναντίον τῆς ῥοπῆς δυσκίνητον. Ἔτι λέγουσί τινες ὅτι καὶ ἡ γραμμὴ ἡ τοῦ κύκλου ἐν φορᾷ ἐστὶν ἀεί, ὥσπερ τὰ μένοντα, διὰ τὸ ἀντερείδειν, οἷον καὶ τοῖς μείζοσι κύκλοις ὑπάρχει πρὸς τοὺς ἐλάττονας.

Θᾶττον γὰρ ὑπὸ τῆς ἴσης ἰσχύος κινοῦνται οἱ μείζους καὶ τὰ βάρη κινοῦσι, διὰ τὸ ῥοπήν τινα ἔχειν τὴν γωνίαν τὴν τοῦ μείζονος κύκλου πρὸς τὴν τοῦ ἐλάττονος, καὶ εἶναι ὅπερ ἡ διάμετρος πρὸς τὴν διάμετρον. Ἀλλὰ μὴν πᾶς κύκλος μείζων πρὸς ἐλάττονα· ἄπειροι γὰρ οἱ ἐλάττονες.

Εἰ δὲ καὶ πρὸς ἕτερον ἔχει ῥοπὴν ὁ κύκλος, ὁμοίως δὲ εὐκίνητος, καὶ ἄλλην ἂν ἔχοι ῥοπὴν ὁ κύκλος καὶ τὰ ὑπὸ κύκλου κινούμενα, κἂν μὴ τῇ ἁψῖδι ἅπτηται τοῦ ἐπιπέδου, ἀλλ’ ἢπαρὰ τὸ ἐπίπεδον, ἢ ὡςαἱ τροχιλέαι· καὶ γὰρ οὕτως ἔχοντα ῥᾷστα κινοῦνται καὶ κινοῦσι τὸ βάρος. Ἥ οὐ τῷ κατὰ μικρὸν ἅπτεσθαι καὶ προσκρούειν, ἀλλὰ δι’ ἄλλην αἰτίαν.

Αὕτη δέ ἐστιν ἡ εἰρημένη πρότερον, ὅτι ἐκ δύο φορῶν γεγένηται ὁ κύκλος, ὥστε μίαν αὐτῶν αἰεὶ ἔχειν ῥοπήν, καὶ οἶον φερόμενον αὐτὸν

αἰεὶ κινοῦσιν οἱ κινοῦντες, ὅταν κινῶσι κατὰ τὴν περιφέρειαν ὁπωσοῦν, Φερομένην γὰρ αὐτὴν κινοῦσιν· τὴν μὲν γὰρ εἰς τὸ πλάγιον αὐτοῦ κίνησιν ὠθεῖ τὸ κινοῦν, τὴν δὲ ἐπὶ τῆς διαμέτρου αύτὸς κινεῖται.

Διὰ τί τὰ διὰ τῶν μειζόνων κύκλων αἰρόμενα καὶ ἑλκόμενα ῥᾷον καὶ θᾶττον κινοῦμεν; οἷον καὶ αἱ τροχιλέαι αἱ μείζους τῶν ἐλαττόνων, καὶ αἱ σκυτάλαι ὁμοίως. Ἤ διότι ὅσῳ ἂν μείζων· ἡ ἐκ τοῦ κέντρουᾖ, ἐν τῷ ἴσῳχρόνῳ πλέον κινεῖται χωρίον, ὥστε καὶ τοῦ ἴσον βάρους ἐπόντος ποιήσει τὸ αὐτό, ὥσπερ εἴπομεν καὶ τὰ μείζω ζυγὰ τῶν ἐλαττόνωνἀκριβέστερα εἶναι. Τὸ μὲν γὰρ σπαρτίον ἐστὶ κέντρον, τοῦ δὲ ζυγοῦ αἱ ἐπὶ τάδε τοῦ σπαρτίου αἱ ἐκ τοῦ κέντρου.

Διὰ τί ῥᾷον, ὅταν ἄνευ βάρους ᾖ, κινεῖται τὸ ζυγόν, ἢ ἔχον βάρος; ὁμοίως δὲ καὶτροχὸς ἢ ἄλλο τοιοῦτο τὸ βαρύτερον μὲν μεῖζον δὲ τοῦ ἐλάττονος καὶκουφοτέρουἭ ὅτι οὐ μόνον εἰς τοὐναντίον τὸ βαρύ, ἀλλὰ καὶ εἰς τὸ πλάγιον δυσκίνητόν ἐστιν. Ἐναντίον γὰρ τῇ ῥοπῇκινῆσαι χαλεπῶς, ἐφ’ ὃ δὲ ῥέπει, ῥᾳδίως· εἰς δὲ τὸ πλάγιον οὐ ῥέπει.

Διὰ τί ἐπὶ τῶν σκυτάλων ῥᾷον τὰ φορτία κομίζεται ἢ ἐπὶ τῶν ἁμαξῶν, ἐχουσῶν τῶν μὲν μεγάλους τροχούς, τῶν δὲ μικρούς; Ἣ διότι ἐπὶ τῶν σκυτάλων οὐδεμίαν ἔχει πρόσκοψιν, τὸ δὲ ἐπὶ τῶν ἀμαξῶν τὸν ἄξονα, καὶ προσκόπτει αὐτῷ· ἔκ τε γὰρ τῶν ἄνωθεν πιέζει αὐτὸν καὶ ἐκ τῶν πλαγίων.

Τὸ δὲ ἐπὶ τῶν σκυτάλων ἐπὶ δύο τούτων κινεῖται, τῇ τε κάτω χήρᾳ ὑποκειμένῃ καὶ τῷ βάρει τῷ ἐπικειμένῳ· ἐπ’ἀμφοτέρων γὰρ τούτων κυλίεται τῶν τόπων ὁ κύκλος καὶ φερόμενος ὠθεῖται.

Διὰ τί πορρωτέρω τὰ βέλη φέρεται ἀπὸ τῆς σφενδόνης ἢ ἀπὸ τῆς χειρός; Καἰτοῖ κρατεῖ γε ὁ βάλλων τῇ χειρὶ

μᾶλλον ἢ ἀπαρτήσας τὸ βάρος. Καὶ ἔτι οὕτω μὲν δύο βάρη κινεῖ, τό τε τῆς σφενδόνης καὶ τὸ βέλος, ἐκείνως δὲ τὸ βέλος μόνον.

Πότερον ὅτι ἐν μὲν τῇ σφενδόνῃ κινούμενον τὸ βέλος ῥίπτει ὁ βάλλων (περιαγαγὼν γὰρ κύκλῳ πολλάκις ἀφίησιν), ἐκ δὲ τῆς χειρὸς ἀπὸ τῆς ἠρεμίας ἡ ἀρχή· πάντα δὲ εὐκινητότερα κινούμενα ἢ ἠρεμοῦντα.

Ἣ διά τε τοῦτο, καὶ διότι ἐν μὲν τῷ σφενδονᾶν ἡ μὲν χεὶρ γίνεται κέντρον, ἡ δὲ σφενδόνη ἡ ἐκ τοῦ κέντρου· ὅσῳ ἂν ᾖ μείζων ἡ ἀπὸ τοῦ κέντρου, κινεῖται θᾶττον. Ἡ δὲ ἀπὸ τῆς χειρὸς βολὴ πρὸς τὴν σφενδόνην βραχεῖα ἐστίν.

Διὰ τί ῥᾷον κινοῦνται περὶ τὸ αὐτὸ ζυγὸν οἱ μείζους τῶν ἐλαττόνων κόλλοπες, καὶ οἱ αὐτοὶ ὄνοι οἱ λεπτότεροι ὑπὸ τῆς αὐτῆς ἰσχύος τῶν παχυτέρων; Ἣ διότι ὁ μὲν ὅνος καὶ τὸ ζυγὸν κέντρον ἐστίν, τὰ δὲἀπέχοντα μεγέθη αἱ ἐκ τοῦ κέντρου;

Θᾶττον δὲ κινοῦνται καὶ πλέον ἀπὸ τῆςαὐτῆς ἰσχύος αἱ τῶν μειζόνων κύκλων ἢ αἱ τῶν ἐλαττόνων· ὑπὸ τῆς αὐτῆς γὰρ ἰσχύοςθᾶττον μεθίσταται τὸ ἄκρον τὸ πορρώτερον τοῦ κέντρου. Διὸ πρὸς μὲν τὸ ζυγὸν τοὺς κόλλοπας ὄργανα ποιοῦνται, οἶς ῥᾷον στρέφουσιν· ἐν δὲ τοῖς λεπτοῖς ὄνοις πλεῖον γίνεται τὸ ἔξω τοῦ ξύλου, αὕτη δὲ γίνεται ἡ ἐκ τοῦ κέντρου.