Mechanica

Aristotle

Aristotle. Aristotelis Opera, Volume 6. Bekker, Immanuel, editor. Oxford: Oxford University Press, 1837.

Αἴτιον δὲ ὅτι τοῦ μὲν ἀπὸ τῆς ἀμβλείας φερομένου σχεδὸν ἐναντίαι ἀμφότεραι γίνονται, ἥν τε αὐτὴ φέρεται καὶ ἣν ὑπὸ τῆς πλευρᾶς ὑποφέρεται, τοῦ δὲ ἀπὸ τῆς ὀξείας συμβαίνει φέρεσθαι ἐπὶ τὸ αὐτό. Συνεπουρίζει γὰρ ἡ τῆς πλευράς τὴν ἐπὶ τῆς διαμέτρου· καὶ ὅσῳ ἂν τὴν μὲν ὀξυτέραν ποιήσῃ, τὴν δὲ ἀμβλυτέραν, ἡ μὲν βραδυτέρα ἔσται, ἡ θάττων.

Αἱ μὲν γὰρ ἐναντιώτεραι γίνονται διὰ τὸ ἀμβλυτέραν γίνεσθαι τὴν γωνίαν, αἱ δὲ μᾶλλον ἐπὶ τὰ αὐτὰ διὰ τὸ συνάγεσθαι τὰς γραμμάς. Τὸ μὲν γὰρ Β σχεδὸν ἐπὶ τὸ αὐτὸ φέρεται κατ’ ἀμφοτέρας τὰς φοράς· συνεπουρίζεται οὖν ἡ ἑτέρα, καὶ ὅσῳ ἂν ὀξυτέρα γίνηται ἡ γωνία, τοσούτῳ μᾶλλον.

Τὸ Α δὲ ἐπὶ τοὐναντίον· αὐτὸ μὲν γὰρ

πρὸς τὸ Β φέρεται, ἡ δὲ πλευρὰ ὑποφέρει αὐτὸ πρὸς τὸ Δ. Καὶ ὅσῳ ἂν ἀμβλυτέρα ἡ γωνία ᾗ, ἐναντιώτεραι αἱ φοραὶ γίνονται·εὐθυτέρα γὰρ ἡ γραμμὴ γίνεται. Εἰ δ’ ὅλως εὐθεῖα γένοιτο, παντελῶς ἂν εἴησαν ἐναντίαι. Ἡ δὲ πλευρὰ ὑπ’ οὐθενὸς κωλύεται μίαν φερομένη φοράν. Εὐλόγως οὖν τὴν μείζω διέρχεται.

Ἀπορεῖται διὰ τί ποτε ὁ μείζων κύκλος τῷ ἐλάττονι κύκλῳ ἴσηνἐξελίττεται γραμμήν, ὅταν περὶ τὸ αὐτὸ κέντρον τεθῶσι; Χωρὶς δὲ ἐκκυλιόμενοι, ὥσπερ τὸ μέγεθος αὐτῶν πρὸς τὸ μέγεθος ἔχει, οὕτως καὶ αἱ γραμμαὶ αὐτῶν γίνονται πρὸς ἀλλήλας.

Ἔτι δὲ ἑνὸς καὶ τοῦ αὐτοῦ κέντρου ὄντος ἀμφοῖν, ὁτὲ μὲν τηλικαύτη γίνεται ἡ γραμμὴ ἢν ἐκκυλίονται, ἡλίκην ὁ ἐλάττων κύκλος καθ’ αὐτὸν ἐκκυλίεται, ὁτὲ δὲ ὅσην ὁ μείζων. Ὅτι μὲν οὖν μείζω ἐκκυλίεται ὁ μείζων, φανερόν.

Γωνία μὲν γὰρ δοκεῖ κατὰ τὴν αἴσθησιν εἶναι ἡ περιφέρεια ἑκάστου τῆς οἰκείας διαμέτρου, ἡ τοῦ μείζονος κύκλου μείζων, ἡ δὲ τοῦ ἐλάττονος ἐλάττων, ὥστε τὸν αὐτὸν τοῦτον ἕξουσι λόγον, καθ’ ἃς ἐξεκυλίσθησαν αἱ γραμμαὶ πρὸς ἀλλήλας κατὰ τὴν αἴσθησιν.

Ἀλλὰ μὴν καὶ ὅτι τὴν ἴσην ἐκκυλίονται, ὅταν περὶ τὸ αὐτὸ κέντρον κείμενοι ὦσι, δῆλον· καὶ οὕτως γίνεται ὁτὲ μὲν ἴση τῇ γραμμῇ ἣν ὁ μείζων κύκλος ἐκκυλίεται, ὁτὲ δὲ ἐλάττων.